91ÊÓƵ¹ÙÍø

What is a Thickness Gauge?
Knowledge

What is a Thickness Gauge?

Thickness gauges are instruments used to measure the thickness of materials and objects to meet various high-precision measurement and testing needs.
Published: Nov 01, 2022
What is a Thickness Gauge?

What is a Thickness Gauge?

Thickness gauges are instruments used to measure the thickness of materials and objects. It is often used in industrial production to continuously sample the thickness of products, such as steel plates, steel strips, films, papers, metal foils, and other materials.

Thickness gauges can be used to measure the thickness of rolled strips online and output them in the form of electrical signals. The electrical signal is output to the display and the automatic thickness control system to realize the automatic thickness control (AGC) of the strip thickness.

What Thickness Gauges are There?

Common thickness gauges include gamma rays, beta rays, x-rays, and isotope rays, and they are placed at the exit or entrance side of the strip mill. When designing and installing the thickness gauge, it should be as close to the work roll as possible, to reduce the lag time of plate thickness adjustment. Thickness gauges include radioactive thickness gauges that utilize the penetration characteristics of alpha rays, beta rays, and gamma rays; ultrasonic thickness gauges that use ultrasonic frequency changes; Eddy current thickness gauges that use the principle of eddy current thickness, etc.

An instrument for measuring the thickness of the material itself or the thickness of the coating on the surface of the material. The thickness of some components must be measured during manufacturing and maintenance. To understand the thickness and specification of the material. The uniformity of each point, and the degree of corrosion and wear of the material. Sometimes the thickness of the covering layer on the surface of the material must be measured to ensure product quality and production safety. According to the different measurement principles, the commonly used thickness gauges include ultrasonic, magnetic, eddy current, and isotope.

  • Ultrasonic thickness gauge:
    The speed of sound of ultrasonic waves in various media is different, but the speed of sound in the same medium is constant. When the ultrasonic wave propagates in the medium and encounters the second medium, it will be reflected, and the interval time from the transmission to the reception of the ultrasonic pulse can be measured, and the interval time can be converted into thickness. This type of thickness gauge is the most widely used in the power industry. It is often used to measure the thickness of boiler drums, heating surface pipes, pipes, etc., and is used to check the structural dimensions of workpieces. Most of these thickness gauges are portable, with a volume similar to that of a small semiconductor radio, and the display of thickness values is mostly digital. For steel, the maximum measured thickness is about 2000 mm, and the accuracy is between ±0.01 and ±0.1 mm.
  • Magnetic thickness gauge:
    When measuring the magnetoresistance of various magnetically conductive materials, the measured value will change. Due to the thickness of the non-magnetically conductive coating on the surface. Using this change, the thickness of the cover layer can be measured. It is often used to measure the thickness of the sprayed aluminum layer, plastic layer, electroplating layer, phosphating layer, and paint layer on the surface of ferromagnetic metal.
  • Eddy current thickness gauge:
    When the probe coil carrying high-frequency current is placed on the surface of the metal to be measured, eddy current is generated in the metal body due to the action of the high-frequency magnetic field, and the magnetic field generated by this eddy current reacts on the probe coil, causing its impedance to occur. The amount of change is related to the distance of the probe coil from the metal surface (that is, the thickness of the cover layer), so the thickness of the metal surface cover layer can be indirectly measured according to the change of the probe coil impedance. It is often used to determine the thickness of oxide films on aluminum or other insulating coatings on aluminum and copper surfaces.
  • Isotope thickness gauge:
    It can measure the thickness of thin steel, thin copper, thin aluminum, silicon steel, alloy sheet, and other metal materials and rubber sheets, plastic films, paper, etc. Commonly used isotope rays are gamma rays and beta rays.

Where Can Infrared Thickness Gauges be Used?

  • Paper substrate:
    • Adhesive coating: water-based or oil-based, wet, or dry, with an accuracy of 0.15g/m2.
    • Adhesive coating: hot melt adhesive, dry test, the accuracy is 0.2g/m2.
    • Clay/latex coating: wet test, the accuracy is 0.2g/m2, and the concentration of the solution needs to be maintained.
    • Force frame coating: wet test or dry test, the accuracy is 0.15g/m2.
    • Microcapsule coating: wet test, the accuracy is 0.2g/m2, and the concentration of the solution needs to be maintained.
    • Extrusion plastic coating: dry test, the accuracy is 0.1g/m2.
    • Plastic emulsion coating: wet test or dry test, the accuracy is 0.2g/m2.
    • Wax coating: dry measurement, the accuracy is 0.2g/m2.
  • Film substrate:
    • Water-based adhesive coating: wet test or dry test, the dry test may be affected by different films, and the accuracy is 0.2g/m2.
    • Water-based emulsion coating: wet test, the accuracy is 0.15g/m2.
  • Metal substrate:
    • Adhesive coating: the same as the paper substrate.
    • Enamel paint: Since enamel paint is usually rare, a special long-wave test head needs to be customized.
    • Plastic coating: dry test, the accuracy is 0.1g/m2.
    • Wax coating: dry test, the accuracy is 0.15g/m2.

91ÊÓƵ¹ÙÍø to Use the X-RAY Thickness Analyzer?

X-rays are widely used in various non-destructive testing. In addition to common penetrating inspections, elemental analysis can also be performed through the characteristics of exciting elements to generate fluorescence. In addition to the simple qualitative and quantitative analysis of elements, the application of X-ray fluorescence (XRF) can be used to analyze the thickness of the coating through this technology. Through the X-ray excitation of the returned signal on the metal coating, the thickness of the coating can be distinguished. As shown in the example below, the copper (Cu) substrate is plated with tin (Sn). And the thickness of the tin plating layer is calculated according to the relationship between the two signals.

  • Hardware materials:
    Metal coatings are applied to many hardware materials. For example, screw fasteners are often coated with a layer of zinc or nickel. In addition to aesthetics, the function is to prevent scratches and corrosion. The thickness of the coating is an important indicator of the effect of these two functions. Therefore, the industry will confirm the coating thickness of screw fasteners through the X-RAY thickness gauge as a key item of quality management. At the same time, the data of production process parameters can be further integrated to make AIoT (smart production factory).
  • Electronics industry:
    Many high-unit-price electronic products such as CPU, PCB, and various IC substrates/substrates (mobile phones, 5G equipment, image card ICs) will have electroplating processes in the surface treatment process. The inspection and confirmation of the coating thickness are important. Among them, the common surface manufacturing processes are ENIG and ENEPIG. The metal is plated layer by layer. The thickness of each layer is about a few microns (um), and the surface cleaning requirements between different coatings are quite strict. It is hoped to reduce contact as much as possible during the process. X-RAY thickness measurement analysis is a non-contact analysis method and is the best solution for surface treatment process measurement.
  • Other industries:
    The packaging films of medical products, the thickness of battery casings, and automobile-related parts are all common application areas of X-RAY thickness analyzers.

What is Thickness Gage Calibration?

Ultrasonic thickness gauges obtain thickness readings of the sample under test by precise timing of the echoes. To convert these time measurements into thickness measurements, the instrument must be preset according to the sound velocity of the material being measured, various necessary zero offset values required by the instrument, probe type, or echo the shape. This process is often referred to as thickness gauge calibration. The accuracy of any ultrasound measurement depends on accurate and careful calibration. Incorrect calibration can result in inaccurate thickness readings. Fortunately, the calibration process is usually relatively simple.

Many different calibrations for various materials and probes can be stored in the gauge and recalled quickly. Always remember to re-calibrate, or recall an appropriate preset calibration. When the material or probe being tested is changed, or when the temperature of the material being tested has changed significantly. In addition, periodic checks with samples of known thickness are recommended to verify that the gauge is functioning properly.

Precautions for Using the Thickness Gauge:

  • During the test, it should be noted that the metal magnetism and surface roughness of the standard piece should be similar to the test piece.
  • Keep the side head perpendicular to the surface of the sample during measurement.
  • Pay attention to the critical thickness of the base metal when measuring. If it is greater than this thickness, the measurement will not be affected by the thickness of the base metal.
  • When measuring, pay attention to the influence of the curvature of the specimen on the measurement. It is therefore unreliable to measure on curved specimen surfaces.
  • Before measuring, pay attention to whether other electrical equipment around will generate a magnetic field. It will interfere with the magnetic thickness measurement method.
  • When measuring, be careful not to measure at the inner corner and near the edge of the test piece, because the general thickness gauge is very sensitive to the sudden change of the surface shape of the test piece.
  • Keep the pressure constant during measurement, otherwise it will affect the measurement reading.
  • During the test, pay attention to the direct contact between the instrument probe and the test piece, so the ultrasonic thickness gauge removes the attached material on the opposite side.
Published by Nov 01, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree