91ÊÓƵ¹ÙÍø

Introduction to Ultra-Precision Machining Technology
Knowledge

Introduction to Ultra-Precision Machining Technology

Ultra-precision machining technology is an important way to improve the performance, quality, service life and reliability of electromechanical products, as well as saving materials and energy. For example: improving the machining accuracy of cylinders and pistons can improve the efficiency and horsepower of automobile engines and reduce fuel consumption; improving the machining accuracy of rolling elements and raceways of rolling bearings can increase the speed of bearings, reduce vibration and noise; improve flatness of processing of magnetic disks, thereby reducing the gap between it and the magnetic head, can greatly increase the storage capacity of the magnetic disk; improving the marking accuracy of the semiconductor device (reducing the line width, increasing the density) can improve the integration of the microelectronic chip, etc.
Published: Apr 12, 2023
Introduction to Ultra-Precision Machining Technology

What is Ultra-Precision Machining Technology?

Generally, according to the machining accuracy, machining can be divided into three stages: general machining, precision machining, and ultra-precision machining. Ultra-precision machining refers to sub-micron (dimensional error is 0.3 ~ 0.03µm, surface roughness is Ra0.03 ~ 0.005µm) and nanoscale (accuracy error is 0.03µm, surface roughness is less than Ra0.005µm) precision machining. The process methods and technical measures taken to realize these processing are called ultra-finishing technology. Coupled with measurement technology, environmental protection and materials and other issues, this technology is generally referred to as ultra-precision engineering. Ultra-precision machining mainly includes three fields: ultra-precision machining of diamond tools, which can process various mirror surfaces. It has successfully solved the processing of large parabolic mirrors for laser fusion systems and astronomical telescopes; ultra-precision grinding processing such as coating surface processing of high-density hard disks and processing of large-scale integrated circuit substrates; ultra-precision special processing such as large-scale integrated circuit wafers are processed by electron beam and ion beam etching methods, and the line width can reach 0.1µm. If processed by scanning tunneling electron microscope (STM), the line width can reach 2-5nm.

a. Ultra-precision cutting

Ultra-precision cutting starts with SPDT technology, which is supported by air bearing spindles, pneumatic slides, high rigidity, high precision tools, feedback control and ambient temperature control to achieve nanoscale surface roughness. Diamond cutters are mostly used for milling, which is widely used in the processing of copper plane and aspherical optical components, plexiglass, plastic products (such as plastic lenses for cameras, contact lens lenses, etc.), ceramics and composite materials. The future development trend is to use coating technology to improve the wear of diamond tools when working hardened steel. In addition, the processing of tiny parts such as MEMS components requires tiny tools. At present, the size of tiny tools can reach about 50-100 μm. 91ÊÓƵ¹ÙÍøever, if the machining geometric features are at the sub-micron or even nano-scale, the tool diameter must be reduced. The development trend is to use nanomaterials. Such as carbon nanotubes to make ultra-small diameter turning tools or milling cutters.

b. Ultra-precision abrasive machining

Ultra-precision abrasive machining is a mirror grinding method developed on the basis of general precision grinding. The processing objects of ultra-precision grinding are mainly brittle and hard metal materials, semiconductor materials, ceramics, glass, etc. After grinding, a large number of extremely fine grinding marks are left on the machined surface, and the residual height is extremely small. In addition to the sliding, friction and polishing effects of the micro-blade, a machined surface with high precision and low surface roughness can be obtained. Grinding can process cylindrical parts with a roundness of 0.01μm, a dimensional accuracy of 0.1μm and a surface roughness of Ra0.005μm.

c. Ultra-precision grinding

Ultra-precision grinding includes processing methods such as mechanical grinding, chemical mechanical grinding, floating grinding, elastic emission processing, and magnetic grinding. The key conditions for ultra-precision grinding are a virtually vibration-free grinding motion, precise temperature control, a clean environment, and a fine and uniform abrasive. The sphericity of ultra-precision grinding reaches 0.025μm, and the surface roughness Ra reaches 0.003μm.

d. Ultra-precision special machining

Ultra-precision special machining mainly includes laser beam machining, electron beam machining, ion beam machining, micro EDM, fine electrolytic machining and electrolytic grinding, ultrasonic electrolytic machining, ultrasonic electrolytic grinding, ultrasonic EDM and other composite machining. Laser and electron beam processing can achieve drilling, precision cutting, forming cutting, etching, lithography exposure, and processing laser anti-counterfeiting signs; ion beam processing can achieve atomic and molecular level cutting; the removal of fine metal materials can process fine shafts, holes, narrow planes and curved surfaces; fine electrolytic machining can achieve nano-level precision, and the surface will not generate machining stress, and is often used for mirror polishing, mirror thinning, and some applications that require no stress processing.

The United States, the United Kingdom and Japan are internationally leading countries in ultra-precision machining technology. The ultra-precision machining technology in these countries not only has a high overall level of complete sets, but also has a very high degree of commercialization.

In the 1950s, the United States developed the ultra-precision cutting technology of diamond tools, called "SPDT technology" (SinglePoint Diamond Turning) or "micro-inch technology" (1 micro-inch = 0.025μm), and developed the corresponding ultra-precision air bearing spindle. Precision machine tool, used to process large spherical and aspherical parts for laser fusion mirrors, tactical missiles and manned spacecraft.

The Cranfield Institute of Precision Engineering (CUPE), which belongs to the Cranfield Institute of Technology in the United Kingdom, is a unique representative of the British ultra-precision machining technology level. For example, the Nanocentre (Nano Machining Center) produced by CUPE can be used for ultra-precision turning, with grinding head, and ultra-precision grinding.

Compared with the United States and the United Kingdom, Japan's research on ultra-precision machining technology started relatively late, but it is the fastest-growing country in the world in ultra-precision machining technology.

The Development Trend of Ultra-Precision Machining Technology

It is developing towards the direction of high precision, high efficiency, large-scale, miniaturization, intelligence, process integration, online processing and testing integration, and greening.

a. High precision and high efficiency

With the continuous progress of science and technology, the requirements for precision, efficiency and quality are getting higher and higher, and high precision and high efficiency have become the eternal theme of ultra-precision machining. Ultra-precision cutting and grinding technology can effectively improve processing efficiency, CMP and EEM technology can ensure processing accuracy, and semi-fixed abrasive processing methods, electrolytic magnetic grinding, magnetorheological abrasive flow processing and other composite processing methods can take into account the efficiency and will become the trend of ultra-precision machining.

b. Large-scale and miniaturized

Due to the development of aerospace and other technologies, large-scale optoelectronic devices require large-scale ultra-precision machining equipment, such as the ultra-precision machining tool machine for large-scale optical devices with a processing diameter of 2.4-4m developed in the United States. At the same time, with the development of micro-mechanical electronics, optoelectronic information and other fields, ultra-precision processing technology is developing towards miniaturization, such as micro-sensors, micro-drive components and power units, micro-aviation and space flight devices, etc. require micro ultra-precision processing equipment.

c. Smarter

Using intelligent equipment to reduce the dependence of processing results on manual experience has always been the goal pursued in the manufacturing field. The intelligent degree of processing equipment is directly related to the stability and efficiency of processing, which is more obvious in ultra-precision processing.

d. Process integration

Today's competition among enterprises tends to be fierce, and high production efficiency has increasingly become a condition for enterprises to survive. On the other hand, there is an obvious growing trend towards using one machine for multiple operations (eg. turning, drilling, milling, grinding, finishing).

e. Integration of online processing and testing

Due to the high precision of ultra-precision machining, it is necessary to develop the integrated technology of online processing and testing to ensure product quality and improve productivity. At the same time, because the accuracy of the processing equipment itself is sometimes difficult to meet the requirements, the use of online detection, working condition monitoring and error compensation methods can improve the accuracy and ensure the processing quality requirements.

f. Green technology

Abrasive machining is the main method of ultra-precision machining. The manufacture of abrasives, the consumption of abrasives in machining, the consumption of energy and materials during machining, and the large amount of machining fluids used in machining have caused great burdens on the environment. To this end, countries are actively investing in green ultra-precision machining technology to reduce the environmental burden.

Published by Apr 12, 2023 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree