91ÊÓƵ¹ÙÍø

What Types of Roller Bearings and their Functions?
Knowledge

What Types of Roller Bearings and their Functions?

Roller bearings are designed to support the shaft of a rotating body, or the shaft of a linear moving body in a machine.
Published: Apr 22, 2022
What Types of Roller Bearings and their Functions?

What is Bearing?

Bearings are devices used to reduce friction and handle stress caused by rotational motion of an object or machine. Bearings are similar to wheels in that they enable the device to roll, thereby reducing friction between the bearing surface and its rolling surface.

The Working Principle of the Bearing:

The bearing uses a relatively simple construction: It contains balls or cylindrical pins inside a casing. Smooth surfaces on the balls, pins, and casings aid in rolling. The casing has an inner ring which fits tightly on the shaft and rotates with the shaft. An outer ring maintains contact with the housing that the shaft rotates in. The housing evenly separates the rolling elements (balls or pins) and guides the rolling elements to move within a guiding track. The rolling elements bear the load as the bearing rotates.

Bearings can be classified according to the direction of the load that the bearing bears:
  • Radial load bearings: The weight of the load is placed on the bearing perpendicular to the axis of the rotating shaft.
  • Thrust load bearings: Thrust bearings are ball bearings that are used where a force is placed on the bearing parallel to the shaft, such as with helical gear shafts.
Bearings can also be classified according to:
  • The size of the bearing
  • The shape of the bearing rolling element
  • The bearing movement mode
  • The number of rows of bearing rolling elements
  • Whether the bearing parts can be separated or not

The Function of Roller Bearings:

The main function of a bearing is to support a mechanical rotating body, reduce friction during movement, and ensure rotation accuracy.

Roller bearings use rolling contact between components to replace sliding resistance. This eliminates the static friction encountered when movement is initiated, and reduces power consumption during operation. The bearing fixes the shaft position, controlling its axial and radial movement, ensuring its rotation accuracy.

Other Types of Bearings:

  1. Roller Bearings vs Sleeve Bearings
    A sleeve or plain bearing, is a bearing that has the moving surfaces slide against each other. The surfaces make direct contact to each other, in contrast to rolling bearings where the surfaces are separated by the rolling elements.
  2. Radial Bearings vs Axial Bearings
    Bearings can transmit loads radially (perpendicular to the shaft) or axially (thrust-parallel to the shaft), and in many cases a combination of radial and axial loads may be encountered. The choice of bearing design depends on the relevant application.
Different Types of Bearings
  • Sliding bearings:
    Any type of bearing that uses sliding friction between moving surfaces, such as sleeve bearings. The sliding surfaces are separated by lubricating oil to reduce friction and surface wear. Sliding bearings work smoothly, reliably, and without noise.
  • Deep groove ball bearing:
    Deep groove ball bearings are designed to support loads whose line of application is not perpendicular to the bearing axis. They mainly bear the radial load, but can also bear a certain amount of axial load. Deep groove ball bearings are the most common type of bearing produced, with the largest production volume and the widest application range.
  • Self-aligning ball bearings:
    The self-aligning ball bearing has two rows of ball bearings in the inner ring, and a spherical raceway in the outer ring. The spherical shape of the outer ring raceway allows the shaft to operate at an angle to the bearing direction. Self-aligning ball bearings can compensate for the angular misalignment of the shaft relative to the housing caused by the bending of the shaft or a deformation of the housing.
  • Angular contact ball bearing:
    The inner and outer ring raceways of angular contact ball bearings are displaced relative to each other to allow the shaft to turn in direction offset from the bearing axis. They can simultaneously accommodate both radial and axial loads. The axial load capacity is determined by the contact angle and increases with the increase of the contact angle.
  • Cylindrical roller bearing:
    The rollers of cylindrical roller bearings are guided by two ribs in a bearing ring cage. The cylindrical rollers are capable of taking some axial load. These kinds of bearings are easy to install and disassemble.

Uses and Applications of Bearings:

Due to the wide range of applications, the variety and complexity of bearings is extensive. Bearing quality and efficiency varies greatly, with some high-quality bearings designed to meet very strict requirements. Bearing production requires precision manufacturing and accuracy is measured by 0.001mm, compared to ordinary manufacturing tolerances of generally only 0.01mm.

The noise and vibration of a motor depends to a large extent on the bearing quality. During production, close attention is paid to conditions such as the swing difference of tooling, temperature rises of the machine tool etc., to ensure bearing quality. In highly sensitive applications, such as in the rotating device of communication satellites, the bearing performance directly affects the accuracy of communication.

Bearings are used in:
  • Automotive: Engines, wheel axels, transmissions, electrical motors, differential gear shafts, steering components etc.
  • Electrical: Electric motors, household appliances etc.
  • Industrial machinery: Internal combustion engines, construction machinery, railway vehicles, handling machinery, agricultural machinery, high-frequency motors, gas turbines, centrifugal separators, oil pumps, air compressors, fuel injection pumps, printing machinery, motors, generators, reduction gears, etc.
Published by Apr 22, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree