91ÊÓƵ¹ÙÍø

What Is Hyper Converge Infrastructure?
Knowledge

What Is Hyper Converge Infrastructure?

The IT room is an indispensable data management center for all companies. It deos not only keep customer information and transaction records, but also provide application systems for employees to perform operations and maintain operations. It also keep important confidential company information. 91ÊÓƵ¹ÙÍøever, building a traditional IT computer room requires a lot of costs and spaces. Because technological breakthroughs and hyper converged architecture technology can help companies to simplify management processes and reduce construction and maintenance costs, it has become the mainstream IT architecture in the future.
Published: Jul 21, 2021
What Is Hyper Converge Infrastructure?

What Is Hyper Converged Infrastructure?

Hyper converged infrastructure (HCI) is a software-defined, unified system that combines all the elements of a traditional data center: storage, compute, networking and management.

"Hyper converged infrastructure" is an IT term that combines the words of "hyper converged" and "infrastructure". Among them, "infrastructure" refers to the provision of computing, storage, network connection, and other infrastructure services for the IT environment. "Hyper convergence" is formed by adding hyper to converged infrastructure, which means that it can provide further integration to converged architecture.

Hyper converge infrastructure integrates computing, virtualization, storage, and networking into a single cluster. Starting from at least three nodes, users can easily expand the scale according to computing and storage resource requirements. Hyper convergence provides cloud-like simplicity in a single platform that can be deployed on-premises and easily managed. The distributed storage of the X86 server is adopted, and the distributed storage and computing virtualization are deployed in the same server hardware, replacing the complex and expensive traditional infrastructure. Enterprises use a hyper converged architecture to expand the number of nodes in the server, and run software in different nodes, and operate all maintenance functions in a unified manner, with excellent performance and flexibility.

The components of the hyper converged architecture:
  • Storage virtualization
  • Computing virtualization
  • Network virtualization
  • Advanced automated management functions

The virtualization software abstracts the underlying resources, creates a pool, and then dynamically allocates the resources to the application running in the virtual machine or container. It is based on the principle of conforming to the application, so no logic unit is required. Complex structures such as numbering and magnetic zones simplify management.

Key technologies of hyper converged architecture:
  • Distributed storage architecture
    Through data cutting, the huge amount of information is scattered and stored in multiple independent devices on the network. These are placed on the X86 server, and a set of convenient expansion kits is constructed, giving a very stable storage resource pool.
  • Solid State Drive SSD
    SSD uses flash memory to store data, speed up the transmission speed, and greatly improve computer performance. SSD has the advantages of being lightweight, low energy consumption, quiet, and shock resistance. The random performance of SSD makes it able to operate at speeds as high as two orders of magnitude higher that other storage devices. Therefore, unlike the traditional three-tier architecture, additional rack space is required for the storage system, so that storage and computing nodes are integrated and easier to manage.
  • Virtualization applications
    Another key technology to realize hyper-converged architecture technology is virtualization. With virtualization technology, distributed storage or storage virtualization solutions can be effectively used to truly utilize the physical hardware that integrates storage and computing on the x86 Server coexistence.
  • Central Processing Unit CPU
    With the development of the CPU, with its higher performance and lower the manufacturing cost, sufficient performance can solve computing and storage requirements at the same time.
Advantages of hyper converged architecture:

The management is simple and convenient, hardware cost and space occupied are reduced.  Flexible expansion capabilities, suitable for developing small and medium-sized enterprises, depending on business needs, expand the system scale potentials.

  • IT efficiency is higher and management is convenient
    The hyper converged architecture can eliminate manual processes making it no longer necessary to rely on dedicated personnel in the IT team for independent management. By adopting a converged IT team, resources can be monitored and managed at the same time. Storage functions can be improved, and IT resources can be dynamically configured in the form of a storage pool, providing the capacity, performance, and protection required by the system.
  • Reduce costs, reduce hardware space, and store more data
    Use the X86 server, the hyper converged architecture can be expanded vertically or horizontally. There is no need to set up a dedicated network, so capital expenditures are reduced. Capacity can be directly increased without the need to increase the hardware configuration, and the system will not be interrupted. With the hyper converged architecture, companies can build data centers of the appropriate scale based on their own needs, avoiding unnecessary system expenditures.
  • Strong expansion capability, suitable for small and medium enterprises
    The hyper converged architecture can quickly respond to business needs. The hardware configuration can be completed in just a few hours, and it can be put into operation within a few minutes to create workloads and improve the performance of key business applications such as relational databases.
  • Simple maintenance
    Due to the high fault tolerance of the hyper converged architecture, the low risk of data loss, and the short impact on the business, coupled with the advantages of a fast recovery and high degree of automation, system maintenance is simpler than traditional architecture.
Features of hyper converged architecture:
  • Uses general-purpose server hardware to form the basic unit
    Uses standard commercially available server hardware to form a basic unit that integrates computing and storage units.
  • Uses hardware resources in a software-defined way
    Uses virtual machine (VM) as the core and software-defined type to use hardware resources. Resource deployment does not involve the adjustment of the configuration settings of the underlying physical hardware. The underlying hardware resources are planned and used purely in a software-defined manner, and then deliver the required resources to the end-user.
  • Clustered architecture
    Through clustering or distributed storage software, multiple basic unit chassis are combined to form a cluster. This cluster provides the necessary hardware, service, and data availability to allow scalability of the IT environment.
  • Easy to deploy quickly
    The product has completed the software and hardware installation test in advance, and the user only needs to set the basic environmental parameters to start using it.

91ÊÓƵ¹ÙÍø to use hyper converged architecture?

The use of a hyper converged architecture requires the use of the cloud. There are 3 steps from internal to external to integrate private cloud, public cloud, and hybrid cloud applications:

  • Build a private cloud:
    Building a cloud infrastructure in the internal deployment environment can not only reduce costs, but also allow for more control, and increase the flexibility and agility of enterprises to deploy new applications, and indirectly improve security.
  • Connect to the public cloud:
    Choose to connect the public cloud provided by hyper converged architecture vendors to speed up deployment and reduce infrastructure management time.
  • Adopt hybrid cloud:
    Use the hybrid cloud to manage various virtual machines and container applications in data centers, public clouds, and edge environments.
What challenges can hyper convergence overcome?

Digital transformation is the key to business success. The accompanying requirements include support for huge amounts of data, artificial intelligence (AI), and hybrid cloud while meeting the rapidly increasing demand of traditional workloads. Under the current IT infrastructure, the data center will be inefficient, due to dull permutations and combinations that are difficult to manage. Current data centers cannot meet the rapid improvement needs of enterprises and the cloud. HCI centralizes resources and management, which not only reduces costs and complexity but also reduces the burden on employees while improving efficiency.

Published by Jul 21, 2021 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree