91ÊÓƵ¹ÙÍø

What is Deep Learning?
Trend

What is Deep Learning?

Deep learning is a way of machine learning, by building a network, setting goals, and learning. Deep learning is not a panacea for artificial intelligence, it can only be designed for specific needs.
Published: Oct 06, 2022
What is Deep Learning?

What is Deep Learning (DL)?

Deep learning is a type of machine learning that uses artificial neural networks to enable digital systems to learn and make decisions based on unstructured, unlabeled data. Machine learning trains an AI to learn from the data it has acquired, identify patterns, make recommendations, and adjust. With deep learning digital systems don’t just respond to a set of rules, but build knowledge from samples and then use the acquired knowledge to react, act, and operate like a human.

Deep Learning (DL) is a subfield of Machine Learning (ML) that uses algorithms similar to the way neurons are used in the human brain. Deep learning creates artificial neural networks and their different layers based on how the human brain works. Deep learning is the field of continuous learning and improvement by studying its algorithms. The work of deep learning is based on artificial neural networks created to mimic the human mind. With the rapid progress of big data analysis, neural networks are becoming more and more complex. This has led to computers accelerating their pace in observing, learning, and reacting to complex situations, sometimes with neural networks faster than the human mind. Models continue to be trained using large amounts of labeled data and neural networks with multiple layers. With image classification, translation capabilities, and speech recognition technology, deep learning can even decode pattern recognition without human help at all.

The foundation of deep learning is distributed representation in machine learning. The dispersion representation assumes that observations are generated by the interaction of different factors. On this basis, deep learning further assumes that the process of this interaction can be divided into multiple levels, representing multiple layers of abstraction for observations. Different numbers of layers and scales of layers can be used for different levels of abstraction. Deep learning uses this idea of hierarchical abstraction, where higher-level concepts are learned from lower-level concepts. This hierarchical structure is often built-up layer by layer using a greedy algorithm to select more efficient features for machine learning.

Why is Deep Learning Important?

Data scientists and developers use deep learning software to power computers to analyze large and complex data sets, perform complex and non-linear tasks, and respond to a text, speech, or images, often faster and more accurately than humans. These capabilities have many practical applications and create many opportunities for modern innovation.

As the amount of data continues to increase, and computing capacity becomes more powerful and cheaper, deep learning has become more important, whether it is in retail, healthcare, transportation, manufacturing, technology, and other fields. Investing is to drive innovation, gain business opportunities, and not be left behind.

91ÊÓƵ¹ÙÍø does Deep Learning Work?

The operation of deep learning relies on neural network architectures in multiple layers, high-performance graphics processors deployed in the cloud or on clusters, and large amounts of labeled data to achieve extremely high accuracy in text, speech, and image recognition. All of this helps your developers build digital systems that approach human intelligence and reduce the time to train models from weeks to hours, accelerating time-to-value.

Computer programs have a hierarchical structure, with algorithms at each level applying a level of transformation to the input and creating a statistical model as a reference for the output. Various iterations will be considered until the desired level of accuracy is achieved. The data needs to go through several layers or feature sets to get to the final level, which is why this technique is called deep learning. Now with enough data, deep learning programs have been able to create complex hierarchical models using their iteration-driven outputs. They can create extremely accurate predictive models from massive amounts of unstructured raw data. Going forward, this will play an important role in enabling the Internet of Things (IoT), as much of the data generated by humans and machines is unstructured and therefore best handled by deep learning rather than humans.

What is a Deep Learning Architecture?

To make complex machine learning models easier to implement, developers turn to deep learning architectures. These architectures help simplify the process of collecting data that can be used to train neural networks. Can be used with these architectures to speed up training and inference of models.

Train a Deep Learning Model:
  • Supervised Learning -
    When using supervised learning, the algorithm is trained using a labeled dataset. This means that when the algorithm decides on segment information, it can use the tags contained in the data to check whether the decision is correct. With supervised learning, the data on which the model is trained must be provided by a human, who must label the data before using the data to train the algorithm.
  • Unsupervised Learning -
    When using unsupervised learning, the algorithm is trained on data that does not contain any labels or information, and the algorithm cannot use labels or information to check its judgments. Instead, the system sorts and categorizes data according to the patterns it can recognize.
  • Reinforcement Learning -
    When using reinforcement learning, the system can use a trial-and-error approach to make a series of decisions, achieving desired outcomes even in complex environments. When using reinforcement learning, the algorithm does not use the data set to decide, but the information obtained from the environment to make the decision.
  • Deep Reinforcement Learning -
    When deep learning is combined with reinforcement learning techniques, it results in a type of machine learning called deep reinforcement learning. Deep reinforcement learning uses the same trial-and-error decision-making and sophisticated goal-attainment methods as reinforcement learning, but also relies on the power of deep learning to process and understand large amounts of unstructured data.

What can Deep Learning Achieve?

  • Aerospace and Defense:
    Deep learning is widely used to help satellites identify specific objects or areas of interest and classify them as safe or unsafe for soldiers.
  • Medical Research:
    Deep learning is widely used in the field of medical research. In cancer research, for example, deep learning can be used to automatically detect the presence of cancer cells. UCLA researchers have created an advanced microscope that uses high-end data to teach deep learning applications how to precisely identify cancer cells. The scope of deep learning will eventually enable medical research to create personalized medicines tailored to an individual's genomic structure.
  • Automated Industry:
    The heavy machinery industry is an industry that requires a lot of safety measures. Deep learning ensures the safety of workers in such environments by detecting any person or object that enters the unsafe range of heavy machinery.
  • Chatbots and Service Bots:
    Deep learning drives all chatbots and service bots that interact with customers and enables them to provide intelligent answers to increasingly complex voice- and text-based queries. The technology in this area is currently evolving.
  • Image Colorization:
    Tasks that once had to be done manually and took a long time to complete can now be delegated to a computer. Black and white images can be colored using deep learning algorithms that can put image content in context and accurately recreate them with the correct colors.
  • Face Recognition:
    This ability to leverage deep learning is not only used for a range of security purposes but will soon support in-store purchases. Facial recognition is already widely used at airports to enable seamless, paperless check-in. Deep learning will go a step further, making facial recognition a means of payment, even when the person has changed their hairstyle or has poor lighting.
Published by Oct 06, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree