91ÊÓƵ¹ÙÍø

What is Deburring?
Knowledge

What is Deburring?

Deburring is the removal thorns or burrs that have formed around the machined edges of a workpiece. The burr may seem small, but it can directly affect the quality and precision of the product.
Published: Apr 26, 2022
What is Deburring?

The Prevalence and Danger of Glitches

Burrs are an inevitable product of metal processing and are difficult to completely avoid. The existence of burrs not only affects the appearance of the product but also affects the assembly and performance of the product, accelerates the wear between the equipment, and reduces the service life. With the development of high technology and the improvement of product performance, the requirements for product quality are becoming more and more strict, and it is more and more important to remove the burrs of mechanical parts. The existence of burrs has an impact on product quality and product assembly, use, dimensional accuracy, and shape and position accuracy.

What is a Burr?

A burr refers to excess iron filings generated on the edge of a product when the workpiece is being processed. They are formed during cutting, grinding, milling, and other similar chipping processes.

What is Deburring?

During the machine processing or metal workpieces, rough edges or protrusions are often created. These raised protrusions and shavings which remain attached to the workpiece are called "burrs," and the process by which they are removed is called deburring.

Abrasives can be used to remove burrs, or the workpiece can be wiped with a sticky cloth to remove the burrs. Deburring and polishing of more than one area of the metal component may be necessary, as burrs and chips can occur on seams and edges which are not always easy to see or reach.

Deburring is important to the quality, aesthetics, functionality, and smooth operation of the working part. It is equally important for safety, because even small notches can cause moving parts to catch, creating potential accidents, injuries, or unnecessary production delays.

What are the Methods of Deburring?

Chemical removal and physical removal.

  1. Electrolytic deburring:
    Electrical energy can be used to dissolve and remove burrs. The part to be de-burred is connected to the positive pole (anode) of a DC power supply and immersed in an electrolyte solution creating an electrode in the solution. Another electrode is connected to the negative pole (cathode) of the DC power supply and placed into the solution, maintaining a gap between the two poles to allow the electrolyte to circulate. When the anode and the cathode are and supplied with direct current, an electrochemical reaction occurs on the surface of the anode. The dissolved metal on the surface of the part and the electrolyte form a viscous liquid concentrated in the low recesses on the surface of the part, with high resistance and corrosion. The edge of the burr protruding furthest from the surface of the part will dissolve at the fastest rate and will continue to dissolve until all the burrs are dissolved. The edges of the part will gradually form rounded corners as the part is deburred.
    This method is suitable for both non-ferrous and ferrous metal parts, and especially for parts with complex shapes and inner holes, cross holes, and burrs on inner surfaces that are difficult to remove by mechanical and manual methods.
  2. Chemical deburring:
    This process is similar electrolytic deburring but instead of electricity removing the burrs, a chemical reaction occurs on the surface of the part to be deburred, dissolving the burr. Ions gather on the surface of the workpiece and form a film with high resistance and low conductivity, which protects the surface of the workpiece from corrosion. Depending on the material of the workpiece being deburred, different chemical solutions are used. Common materials used for chemical deburring are hydrochloric acid, phosphoric acid, sulfuric acid, diphenylamine hydrochloride, and water. Chemical deburring is suitable for small metal parts and can remove fine burrs less than 0.07 mm thick.
  3. High temperature deburring:
    The parts to be deburred are placed in a tightly sealed chamber, and a mixture of hydrogen and oxygen are fed into the chamber under pressure. A spark is introduced to ignite the mixture. As the mixture explodes, it instantly releases a lot of heat at a temperature is as high as 3,300℃ or more. Due to the extremely short explosion time, the burrs are burned away, and other parts of the workpiece do not have enough time to be affected. During the explosion, the high-pressure gas is pervasive, and the burrs of all inner holes, cross holes, grooves, deep holes, etc. of the parts can be burned off. A special high-temperature deburring tool is required. This method of deburring is suitable for metal, plastic, and rubber parts of any structural shape, especially parts with complex shapes that have burrs in areas that are difficult to remove by hand.
  4. Rolling and deburring:
    The workpiece to be deburred can be placed into a drum with an abrasive material and rotated. During the rotation of the drum, abrasion occurs between the abrasive and the workpiece, removing the burrs. There are special centrifugal deburring machines that use centrifugal force to create a greater force of the adhesive onto the workpiece, making the polishing and deburring process quicker. Abrasives can be quartz sand, sawdust, alumina, ceramics, dolomite, silicon carbide, metal rings, etc. They can be chosen according to the material, shape, and size of the part, as well as the location and size of the burr. With this method, the deformation of the parts is small, the equipment is simple, the operation is easy, and the sources of abrasives are wide. One drawback is that large burrs are difficult to remove.
  5. Floating deburring spindle for deburring:
    Deburring can be done on a CNC machine as an added final machine processing step. A floating deburring spindle is installed on machining center. The spindle can be automatically replaced through the quick-change interface to realize multi-process processing. It is an important step in the machining of cylinder heads, crankshafts, connecting rods, engine blocks, wheel hubs, gas turbine blades, gears etc. This method helps avoids the time-consuming process of manual grinding and deburring. It is highly automated, and greatly improves efficiency and accuracy. It saves on labor costs and reduces the defect rate of parts caused by manual operation errors. The floating mechanism function allows the deburring tool to automatically offset radially or axially according to the actual shape of the workpiece.

Applications of Deburring:

There are many unique applications for deburring. Besides the deburring of machined workpieces, deburring can be used for the edges of especially thin workpieces, such as the fine edges of small workpieces cut from sheet metal. Deburring is also used for the surface grinding of pipes, connections, and shafts. Burrs that appear in the inner hole during punching or laser processing can be removed with various deburring methods.

Published by Apr 26, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree