91ÊÓƵ¹ÙÍø

The Automatic Detection Method of Total Hydrocarbons in Air
Knowledge

The Automatic Detection Method of Total Hydrocarbons in Air

Total petroleum hydrocarbons are a mixture of many different compounds. People can be exposed to total petroleum hydrocarbons in several ways, including fuel pumps, oil spilled on the road, and chemical use at work or home. Certain total petroleum hydrocarbons can affect the nervous system, causing headaches and dizziness.
Published: Nov 11, 2022
The Automatic Detection Method of Total Hydrocarbons in Air

What are Total Petroleum Hydrocarbons?

Total petroleum hydrocarbons are a chemical mixture, all constituent chemicals are mainly composed of carbon and hydrogen. Scientists classify the total petroleum hydrocarbons according to their reaction in soil or water, which can be divided into many petroleum hydrocarbons groups. Each group is made up of many individual chemicals.

91ÊÓƵ¹ÙÍø Does the Entry of Total Petroleum Hydrocarbons into the Environment Change?
  • Total petroleum hydrocarbons may enter the environment unintentionally through industrial emissions, or by-products from commercial or personal use.
  • Total petroleum hydrocarbons may enter the water directly through spills or leaks.
  • Some total petroleum hydrocarbons float in water and form a surface film.
  • Other total petroleum hydrocarbons sink into the sediment.
  • Bacteria and microorganisms in water may decompose some of the total petroleum hydrocarbons.
  • Some total petroleum hydrocarbons may migrate to the soil and remain there for an extended time.

The Automatic Detection Method of Total Hydrocarbons:

This detection method is an online flame ionization detection method. The sample directly enters the flame ionization detector (FID) through the system flow path to measure the content of Total hydrocarbon (THC) in the air. In addition, the sample is introduced into a selective combustion system (such as a catalytic converter) that decomposes non-methane total hydrocarbons and enters the FID detector to measure the content of Methane in the air. After deducting methane from THC, Total nonmethane hydrocarbon (TNMHC) content, the measured concentrations are expressed relative to methane.

  • Scope of application: It is suitable for the detection of methane, total hydrocarbons, and non-methane total hydrocarbons in the air. The measurement range depends on the design of the instrument. Generally, it is recommended to select an instrument with a measurement range of not more than 100 ppm of total hydrocarbons in the air.
  • Interference: High moisture content can affect sample concentration measurements.
  • Sampling and saving: Unless otherwise stipulated by other environmental protection laws and regulations, the location of the sampling port is generally within the height range of 3 to 15 meters above the ground, and the placement position of other air sampling ports is in principle far away from the ground. Within the height range of 1.2 to 1.5 meters above the ground.

What Related Equipment and Materials are Required?

  1. Automatic analyzer for methane, total hydrocarbons, and non-methane total hydrocarbons: The air sample is directly introduced into the FID detector, and the measured result is the concentration of total hydrocarbons. In addition, the sample is introduced into a selective combustion system, which is used to burn the non-methane hydrocarbons in the sample to remove the methane concentration after introduction into the FID detector. The non-methane hydrocarbon concentration is obtained by subtracting the methane concentration from the total hydrocarbon concentration.
  2. Filter: Filter particulate pollutants in the air, such as Teflon and other materials that are not easy to absorb total hydrocarbons.
  3. Recorder: A recorder or data logging system compatible with the analyzer must be able to display and record the concentration of each measurement in an appropriate range.
  4. Sampling equipment:
    • Sampling port: The shape of the sampling port should avoid turbulent flow, such as using a geometrically symmetrical circular opening.
    • Air extraction motor: The air extraction volume must meet the total flow required by the instrument.
    • Gas delivery pipeline: The material of the pipeline in contact with the sampling gas must not adsorb hydrocarbons, and will not release substances that affect the hydrocarbon analysis of the detector, generally Teflon or other inert substances. The other pipelines used for fuel gas and standard gas can be made of Teflon or metal.
  5. Calibration equipment:
    • Flow control valve: It can adjust and control the flow. If it is used for dilution (such as the mass flow controller used in the dynamic dilution system), the accuracy must reach ±2% within the range of the flow.
    • Flowmeter: calibrated flowmeter with an accuracy of ±2%.
    • Cylinder pressure control valve: pressure controller with inert material inner membrane and inner components.
    • Mixing tank: a container for fully mixing A, propane standard gas, and zero-point standard gas.
    • Output manifold: an air distribution pipe made of Teflon or other inert materials, connected to the analyzer with a pressure-resistant pipeline of appropriate diameter, and equipped with a valve to prevent the entry of the atmosphere.

What Related Detection Reagents are There?

  • Methane (CH4) standard gas: methane standard gas containing the concentration required for calibration or high-concentration methane standard gas for dilution.
  • Propane (C3H8) standard gas: the standard gas of propane containing the concentration required for calibration or the standard gas of high concentration for dilution.
  • Zero-point standard gas: high-purity air with a total hydrocarbon concentration of less than 0.1 ppm (calculated as methane concentration).
  • Hydrogen: fuel gas, used for FID analysis, and its total hydrocarbon concentration should be less than 0.1 ppm (calculated as methane concentration).
  • Combustion-supporting gas: air or other suitable gas used for FID analysis, and its total hydrocarbon concentration should be less than 0.1 ppm (calculated as methane concentration).

What are the Steps?

  1. General operation steps: After the sampling equipment, methane, total hydrocarbons, and non-methane total hydrocarbons automatic analyzers and recorders are properly installed, first check the piping system and other equipment, and then carry out the inspection work after confirmation.
    • Set the operating conditions.
    • Zero point/full-scale inspection, if the zero offset or full-scale offset of the respective measurement systems for methane, total hydrocarbons, and non-methane total hydrocarbons does not meet the specifications, perform multi-point calibration again.
    • Perform a sample gas sampling analysis.
  2. Calibration steps:
    • Dynamic dilution method—Use high-concentration methane or propane standard gas to dilute to various desired concentrations by dynamic dilution.
      • Combined calibration system.
      • All flow meters used should be calibrated, and the volume has been converted to the conditions of 25 ℃, 760 mmHg.
      • Set the calibration range of the methane, total hydrocarbons, or non-methane total hydrocarbons analyzer to be the same as the general operating range.
      • Connect the analyzer and recorder.
      • Adjust the zero-point standard gas flow control valve to set the total gas flow so that enough flow can be input into the analyzer. Pass the gas until the analyzer shows a stable value, then adjust the zero-control knob of the analyzer to obtain a signal of 5% compensation of the recorder, and record the reading as the zero-point background value.
      • Adjust the flow rate of zero-point standard gas and standard gas from methane or propane to generate standard gas with full-scale concentration.
    • Multiple cylinder method - use methane or propane standard gases with confirmed concentrations for calibration.
      • Multi-cylinder calibration system device.
      • Input the zero-point standard gas and the standard gas of full-scale concentration respectively. After adjusting the zero-point and full-scale of the analyzer, input each standard concentration gas. Draw a calibration curve according to the input standard concentration of methane or propane and the response of the analyzer.

91ÊÓƵ¹ÙÍø to Carry Out Quality Control?

  1. Correction frequency:
    • Newly installed or relocated instruments.
    • After the main equipment of the instrument has been maintained.
    • The routine zero-point offset or full-scale offset every working day does not meet the specifications.
    • Periodic calibration every 6 months.
  2. Multi-point calibration: When performing multi-point calibration with five different concentrations of methane or propane standard gas such as 0%, 20%, 40%, 60%, and 80% of the measurement range, the linear correlation coefficient must be greater than 0.995.
  3. Medium concentration inspection: After the system has been calibrated at zero point and full scale. The second source methane or propane standard gas with a concentration of about 50% full scale must be imported every working day. It should be less than ±2% of the full scale. If the system displays non-methane total hydrocarbons, the value error of the measurement system should be less than ±4% of the full scale.
  4. The flow control valve shall be calibrated every 6 months.
Published by Nov 11, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree