91ÊÓƵ¹ÙÍø

What Is a Car Power Transmission System?
Knowledge

What Is a Car Power Transmission System?

An automobile transmission system refers to the general term of all power transmission devices from the engine to the driving wheels. The function of the transmission system is to transmit the power of the engine to the driving wheels.
Published: May 25, 2021
What Is a Car Power Transmission System?

What is a automobile power transmission system?

Different cars have slightly different chassis compositions. For example, in trucks and some cars, their chassis is generally composed of clutches, transmissions, universal transmissions (universal joints and driveshafts), and drive axles (main reducers, differentials). It is composed of a motor, half shaft, axle housing) and so on. 91ÊÓƵ¹ÙÍøever, more and more automatic transmissions are used in modern cars, and their chassis includes automatic transmissions, universal transmissions, drive axles, etc., that is, automatic transmissions are used to replace clutches and manual transmissions. If it is an off-road vehicle (including SUV, (Sports Utility Vehicle), it should also include the transfer case.

Power transmission system-the concept of integrated intelligent control of automobile power transmission system integrated control:

The integrated control of the automobile power transmission system refers to the application of electronic technology and automatic transmission theory. With the electronic control unit (ECU) as the core, through the hydraulic actuator to control the separation and engagement of the clutch, the selection and shifting operations, and the control of the engine through the electronic device, the oil supply realizes the automatic operation of starting and shifting. The basic control idea is: according to the driver's intention (accelerator pedal, brake pedal, joystick, etc.) and the state of the vehicle (engine speed, input shaft speed, vehicle speed, gear position), and according to the appropriate control law (shift Rules, clutch engagement rules, etc.), with the help of corresponding actuators (clutch actuators, shifting actuators) and electronic devices (engine fuel supply control electronic devices,) the vehicle powertrain (engine, clutch, transmission) will carry out joint manipulation.

Integrated control method

The integrated control mode of the power transmission system is generally divided into 3 categories:

  1. Use two or more computers to communicate. Realize information sharing between engine ECU and transmission ECU. This kind of control method makes full use of mature engine and transmission control technology, makes few changes to the original system, is easy to implement, and has low development costs, but due to more wiring, the integration is not high.
  2. A single ECU is used to achieve overall control of the engine and transmission. Its advantages are high integration, reduced peripheral wiring, and improved reliability, but it has higher requirements for ECUs and high development costs. The power control system on the Toyota Lexus Ls400 sedan, the four-speed automatic transmission A341 E with intelligent control system, and the engine all use the same ECU. The ECU, equipped with a microcomputer, controls the automatic transmission shifting, locking time, and the actuator in the planetary gear system. It also controls the clutch, brake, oil pressure and engine torque when shifting gears, making for maximum quality shifting.
  3. Adopt CAN bus structure for overall control. At present, the CAN bus is widely used in automobiles, and the structure of the two control subsystems of the engine and the transmission through the CAN bus is shown in Figure 2. Through the CAN bus, the two systems can not only transmit commands, requests, and some basic states of the car (such as engine speed, vehicle speed, cooling water temperature, etc.) but also transmit real-time data such as fuel volume and speed signals, setting higher priority commands and so on.

The architecture of the automobile power transmission system

The basic composition of the integrated control system of the automobile power transmission system

The function of the control system is to automatically adjust the transmission ratio and working status of the basic transmission components according to the driver's intention and the changes in the vehicle driving environment, to achieve the best transmission efficiency and the best overall vehicle performance. The vehicle control system is mainly composed of three parts: the vehicle data acquisition system (sensor part), the electronic control unit, and the actuator.

  • The composition of the vehicle data acquisition system (sensor part). In the entire control system, part of the role of the sensor is equivalent to the driver's visual, auditory, and tactile system in the case of manually operating the shifting vehicle, collecting, and transmitting various parameter signals required for shifting to the electronic control unit.
    The vehicle runs and works according to the driver's intention, and the vehicle control system must be able to correctly recognize and implement the driver's manipulation. The recognition of the driver's intention is to test the changes of the vehicle control mechanism (such as accelerator pedal, brake pedal, steering wheel angle, etc.) through sensors, and obtain through analysis.
    The sensors used in automobiles mainly include the following types: magnetoelectric sensors, magneto resistive sensors, photoelectric sensors, Hall sensors, thermal sensors, varistor sensors, piezoelectric crystal sensors, etc. The sensors used in the transmission part of the power transmission system mainly include engine speed sensor, vehicle speed sensor, throttle opening sensor, clutch displacement sensor, etc. Among them, the engine speed sensor and the vehicle speed sensor use magnetoelectric sensors and Hall sensors, and other sensors that use the principle of magnetoelectric signals. The throttle opening sensor and the clutch displacement sensor both use rheostat sensors.
    In addition to sensors, other signals are transmitted through switches and controllers or other methods. Commonly used switches include multi-function switches and forced low-shift switches. The switch is also a very important means of signal input.
  • Electronic control unit. The electronic control unit (ECU) is the core of the entire control system. Its function is based on the driver's intention and the signal detected and provided by the vehicle's motion state parameters to carry out gear shifts or working state changes. The main functions of the electronic control unit are: signal acquisition and preprocessing, driver manipulation intention recognition, vehicle status recognition, shift decision (shift schedule), shift quality control, fault diagnosis function, output, and display functions.
    The new generation of controllers has comprehensive functions and very good control performance. It uses high-performance 16-bit or 32-bit microprocessors, and some even use custom-made microprocessors, which contain most of the functions required for control and simplify control of the circuit and enhance the function and reliability of the circuit. As the controller's microprocessor is updated, the shift control is more complicated, and the processor's peripheral circuit expansion makes the input and output functions more powerful. In order to achieve greater improvement in control performance, not only control programs are used in these controllers, but also embedded real-time operating systems are used.
  • Executive agency. After the control system samples and obtains the input signal, it is sent to the controller for data processing. After the data processing is completed, control signal No. 1 of the electronic control unit will change the working state of the power transmission system through the actuator to ensure the proper performance of the vehicle. At the same time, the actuator guarantees the control of shift quality. The actuators that realize gear switching generally use solenoid valves.
The composition of the transmission system:

The mechanical transmission system is mainly composed of clutch, transmission, universal transmission, and drive axle. The universal transmission device is composed of a universal joint and a drive shaft, and the drive axle is composed of the main reducer and a differential.
The hydromechanical transmission system is mainly composed of a hydraulic torque converter, an automatic transmission, a universal transmission, and a drive axle.

The function of the transmission system:
  1. Deceleration and torque increase: The power output by the engine has the characteristics of high speed and low torque, which cannot meet the basic needs of car driving. Through the main reducer of the transmission system, the purpose of deceleration and torque increase can be achieved, which is transmitted to the driving wheels. The lower torque of the engine is converted to higher torque of the drivetrain.
  2. Variable speed and torque: The optimal working speed range of the engine is very small, but the speed of the car and the resistance that needs to be overcome vary in a wide range. Through the transmission system, the working range of the engine can be expanded, thereby meeting the demands for large changes in the driving speed of the car and overcoming various driving circumstances and resistance.
  3. Reversing: The engine cannot be reversed, but in addition to forwarding, the car needs to reverse. If the reverse gear is set in the transmission, the car can reverse.
  4. Interrupt the power transmission of the transmission system when necessary: When starting the engine, shifting gears, stopping for a short time during driving (such as waiting for a traffic light), or car sliding at low speed, it is necessary to interrupt the power transmission of the transmission system. The neutral gear can interrupt the power transmission.
  5. Differential function: In the case of car steering, etc., the two driving wheels need to be able to rotate at different speeds, and the differential function can be realized through the differential in the drive axle.
The installation position of the automobile transmission system:
  1. Front-engine Rear-drive (FR) engine is mainly used for trucks, some passenger cars, and some luxury cars.
  2. Front-engine Front-drive (FF) is a layout that is gradually prevailing on cars. It has the advantages of compact structure, reduced vehicle weight, lowered floor height, and improved handling stability at high speeds.
    • Engine transverse: the axis of the crankshaft of the engine is parallel to the axis of the wheels, and the main reducer can be driven by cylindrical gears.
    • Longitudinal installation of the engine: the axis of the crankshaft of the engine is perpendicular to the axis of the wheels, and the main reducer must be driven by a conical gear.
  3. Rear-engine Rear-drive (RR): The engine is arranged behind the rear axle and driven by the rear wheels. Mainly used in large and medium-sized passenger cars and a few sports cars.
  4. Middle-engine Rear-drive (MR): The engine is arranged between the front and rear axles and is driven by the rear wheels. Used in sports cars and a few large and medium passenger cars.
  5. All-wheel drive (AWD): A transfer case is added to the transmission system, and the power can be transmitted to the front and rear wheels at the same time. Mainly used for off-road vehicles and heavy trucks.

The function of the transmission system is to connect the engine that generates power and the drive wheel, which uses mechanical energy to rotate the shaft of the drive wheel. The coupling also includes two physical elements, and on the vehicle, they may not be in proximity, so a long driveshaft is required. The speed of the engine and the driving wheels are different, so a gear train is needed to convert the speed.

Published by May 25, 2021 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree