91ÊÓƵ¹ÙÍø

91ÊÓƵ¹ÙÍø to Deal with the Recycling of Used Batteries from Electric Vehicles?
Trend

91ÊÓƵ¹ÙÍø to Deal with the Recycling of Used Batteries from Electric Vehicles?

The world is studying how to deal with the increasing number of discarded electric vehicle batteries.
Published: May 19, 2021
91ÊÓƵ¹ÙÍø to Deal with the Recycling of Used Batteries from Electric Vehicles?

The Goal of Carbon Neutrality

To achieve the goal of carbon neutrality, countries around the world are increasing the use of new energy electric vehicles, but this has also led to another issue. The handling of used batteries from electric vehicles has become an environmental and economic problem that needs to be solved.

The European Union hopes that by 2030 there will be 30 million electric vehicles on European roads. 91ÊÓƵ¹ÙÍø to deal with used electric vehicle batteries will be a huge challenge. Take the Chinese market as an example. In 2020, a record 1.3 million electric vehicles were sold in the Chinese market, accounting for 40% of global electric vehicle sales.

With the market demand for electric vehicles growing rapidly, looking ahead 10-15 years, to when the service life of an electric vehicle’s battery expires, how will we deal with the problem of the used batteries management? While issues of carbon emissions are being addressed, the potential for ecological damage from used batteries also needs to be addressed urgently.

The difference between new and old vehicle batteries

Although most electric vehicle components are like traditional car components, the biggest difference is the battery.

The lead-acid batteries of traditional energy vehicles can be easily recycled, but the lithium-ion batteries used in new energy electric vehicles are inconvenient to do so. The battery of an electric vehicle is larger and heavier than that of an ordinary fossil fuel vehicle and consists of hundreds of individual lithium-ion batteries, all of which need to be dismantled for recycling. They contain dangerous substances, and if they are disassembled improperly, tend to explode.

Prospects for the Recycling Industry of Electric Vehicle Batteries

The European electric vehicle market has huge demand and is expected to develop a new recycling industry. At present, on a global scale, the recycling rate of lithium-ion batteries is still unclear, and many people think it is around 5%. In some parts of the world, it is still far below this number. The European Union recently put forward a proposal that will require electric vehicle suppliers to be responsible to ensure that their products will not be arbitrarily discarded after failure. Most manufacturers have responded.

Many different useful materials are recovered in the recycling process. As a first step, focus is placed on retrieving cathode metals such as cobalt, nickel, lithium, and manganese. Other recycling steps can are then taken to disassemble parts of the battery to retrieve aluminum and copper.

The pros and cons of recycling electric vehicle batteries

Efforts are being made to try to optimize the recycling and utilization of used electric vehicle batteries and make this process as streamlined as possible. In the future, there must be more efficient and cost-effective methods for electric vehicle battery recycling. Although the industry already has some division of labor and the ability to expand its scale, its efficiency is not high.

For example, most of the constituents of current batteries are reduced to so-called black substances (a mixture of lithium, manganese, cobalt, and nickel) during the recycling process. This requires further, energy-intensive processing to recover the relevant materials in a usable form. Manually disassembling electric vehicle batteries can effectively recycle more of these materials, but doing so can also cause problems.

In some countries such as China, health, safety, and environmental supervision regulations are more relaxed, allowing for working conditions that would not be accepted in the West. In addition, higher labor costs in European countries, such as the United Kingdom, make it difficult to implement cost effective recycling programs.

Rare metals and Chinese practices

Although improving the recyclability of electric vehicle batteries poses safety and labor cost challenges, from another perspective there are other economic considerations. Electric vehicle batteries have many elements that are difficult to obtain for industrial use in Europe and the United Kingdom.

In a 2021 report on Chinese government programs, one new project included was the construction of a recycling system for electric vehicle batteries. After the outbreak of the epidemic in 2020, the production of international cobalt mines declined sharply. Coupled with limited international logistics, cobalt prices rose significantly. With the rising costs of battery raw materials, the regeneration value of rare metals such as nickel, cobalt, and manganese in electric vehicle batteries has increased. As the world's largest electric vehicle market grows, Chinese industry scholars believe that this is an opportunity as well as a challenge. The Chinese industry analysts estimates that by 2030, the vehicle battery recycling market will exceed 100 billion yuan.

91ÊÓƵ¹ÙÍø China will handle pollution problems in the recycling of vehicle batteries is still being explored. In 2020, the total weight of batteries decommissioned in China was about 200,000 tons. Many of these flowed into unregulated black-markets and small workshops where potential pollution hazards, as well as threats to personnel safety existed. With the rapid increase in end-of-life electric vehicle batteries, this issue is arousing more and more urgent attention.

In Europe, one solution to this problem is automation and robotics, which can reduce the dangers encountered with electric vehicle battery recycling, and increase recycling’s economic benefits. 

With the rise in the number of electric vehicles and renewable energy storage systems being used, will there be enough raw materials to supply the batteries needed in the future? In a recent report by the East Asia Division of Greenpeace, it was pointed out that there would be enough retired lithium-ion batteries from electric vehicles to meet the global demand for materials needed for the production of energy storage systems by as soon as 2030.

The current battery industry is mainly centered in China, South Korea, and Japan, with 85% of production concentrated in these countries. Serious supply shortage risks for lithium and cobalt metals will impact battery manufacturing supply chains and affect local economies. To avoid possible supply shortages, more attention should be paid to battery recycling. Both the recovery of key raw materials from used batteries and the secondary production of batteries are important processes in the circular supply chain.

After 5-8 years of use, the electric vehicle batteries storage capacity will have decreased to about 80% and will eventually need to be replaced. It is estimated that worldwide, the amount of waste from electric vehicle batteries from 2021 to 2030 will reach 12.85 million tons. To meet the increasing demand for batteries, the demand for lithium metal in 2030 will be 29.7 times that of 2018. 30% of the world's total mined cobalt metal has been mined in just the past ten years. Up to 2021, a total of approximately 10.35 million tons of lithium, cobalt, nickel, and manganese have been mined worldwide.

China’s national policy points out that electric vehicles are an important part of emission reduction actions, but the high emissions of electric vehicle manufacturing must also be considered. Dealing with the recycling of waste batteries is just as important economically and environmentally as dealing with carbon dioxide.

Waste batteries can also be recycled for use in 5G equipment, data centers, and energy storage systems. This will decrease overall consumption and resource extraction, as well as reduce waste and carbon emissions. To make electric vehicles a sustainable solution, battery manufacturers and automobile companies will need bear the burden of a circular economy, and governments will need to support these types of socially responsible solutions.


Published by May 19, 2021 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree