91Ƶ

What is Precision Machining?
Knowledge

What is Precision Machining?

Precision machining is the process of removing material from a workpiece to chang the dimensions or properties of the workpiece so that is can become a more precise product that will meet very exact specifications.
Published: Jun 14, 2022
What is Precision Machining?

What is Precision Machining?

Precision machining is the process of removing material from a workpiece until it meets precise tolerances. There are many types of precision machine tools, including milling, turning, and electrical discharge machining (EDM) tools. Precision machining tools can be controlled by computers, and these machines are called Computer Numerical Control (CNC) machining tools.

Almost all metals, and many other materials, such as plastic and wood, can be precision machined using precision machining tools. These machines are operated by professional and well-trained mechanics. In order for the cutting tool to do its job, it must move in the specified direction in order to make the correct cut. The rate at which material is removed from the workpiece is called the "cutting speed." The workpiece can also be moved during machining, and this secondary movement is called "feeding." These actions, along with the sharpness of the cutting tool, determine the efficiency and accuracy of the precision machine.

High-quality precision machining requires the ability to follow specific blueprints produced by CAD (Computer Aided Design) or CAM (Computer Aided Manufacturing) programs such as AutoCAD and TurboCAD. The software can help create complex 3D diagrams or outlines needed to manufacture tools, machines or objects. These blueprints must be strictly followed to ensure product integrity. Although most precision machining companies use some form of CAD/CAM program, they still often use hand-drawn sketches in the initial stages of design.

Precision machining is used on a variety of materials, including steel, bronze, graphite, glass and plastic, to name a few. Depending on the sizes of the project and the materials used, a variety of precision machining tools will be used. Any combination of lathes, milling machines, drilling machines, saws and grinders, and high-speed robots can be used. The aerospace industry may use high-speed machining, while woodworking tool manufacturing may use photochemical etching and milling processes. Production runs or a specific number of any particular item can be in the thousands, or just a few. CNC equipment allows precise dimensions to be followed throughout the product run.

What is CNC?

CNCs automate machine tools by executing pre-programmed sequences of machine control commands through a computer. This is in contrast to machines that are manually controlled by handwheels or levers, or mechanically controlled by cams alone.

In modern CNC systems, the design of mechanical parts and their manufacturing procedures is highly automated. The mechanical dimensions of the part are defined using CAD software and then translated into manufacturing instructions by CAM software. The generated instructions are converted by ("post-processor" software) into the specific commands needed for a specific machine to produce that component and then loaded into the CNC machine.

Since any given component may require the use of many different tools - drills, saws, etc. - modern machines often combine multiple tools into a single "unit.” In other installations, many different machines are used with external controllers and robots to move components from machine to machine. In either case, the series of steps required to produce any part is highly automated and produces a part that closely matches the original CAD.

As controller hardware has evolved, so have the factories as well. As a safety measure, one change made is to enclose the entire mechanism in a large enclosure, often with additional safety locks to keep operators away from the workpiece during operation. Most new CNC systems manufactured today are 100% electronically controlled.

CNC-like systems are now used for almost any process that requires a series of movements and operations. These include laser cutting, welding, friction stir welding, ultrasonic welding, flame and plasma cutting, bending, rotating, punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, pick and place, and sawing.

What is CNC Machining?

CNC machining is a manufacturing process in which pre-programmed computer software instructs the movement of factory tools and machines. This process can be used to control a range of complex machinery, from grinders and lathes to milling machines and routers. With CNC machining, 3D cutting tasks can be accomplished in one set of cues.

When a CNC system is activated, the required cuts are programmed into the software and assigned to the corresponding tools and machines that perform the prescribed dimensional tasks, just like a robot.

In CNC programming, code generators in digital systems often assume that the mechanism is flawless. But the possibility of error does exist, and errors can be multiplied whenever the machine is instructed to cut in multiple directions at the same time.

Programs for CNC machine tools are entered into a computer via a keypad. CNC programming is stored in the computer's memory. The code itself is written and edited by programmers. The CNC system is by no means static, as new cues can be added to the original program through modified code.

What is Milling Machining?

Milling is a machining process that uses a rotary cutter to remove material from a workpiece by advancing (or feeding) the cutter into the workpiece in a specific direction. The tool can also be held at an angle relative to the axis of the tool. Milling covers a variety of different operations and machines, and can be used for machining small parts as well as for large, heavy-duty combination milling jobs. Milling is one of the most common processes used for machining custom parts to precise tolerances.

Milling can be done with a wide variety of machine tools. After the advent of CNC, milling machines developed into machining centers: milling machines enhanced by automatic tool changers, tool magazines or conveyor belts, CNC functions, cooling systems and housings. Milling centers are generally classified as vertical machining centers (VMC) or horizontal machining centers (HMC).

The integration of milling and turning processes, and vice versa, was initially done combining machine turning with milling cutters. This has led to a new class of machine tools; multitasking machines (MTMs), which are specialized for milling and turning within the same working envelope.

What is Turning Machine?

Turning involves the rotation of a workpiece (usually metal, but may also be wood, plastic or stone) near a cutting tool. Turning is usually performed on a lathe.

There are different types of turning operations including: linear turning, threading, tapered turning and external grooving. In linear turning, a single cutting tool moves in parallel across the workpiece as the workpiece rotates. In tapered turning, a tapered turning attachment is used. For external grooving turning operations, grooves are cut into the workpiece to a specific depth. Because they are in the split turning method, the grooves are not completely removed.

A lathe is used to shape material by rotating a workpiece into a cutting tool. There are three types of lathes: engine lathes which have an automated slide and power feed, turret lathes which have a turret for holding various different cutting tools, and special purpose lathes designed to perform special machining operations. Lathes can range in size from small and portable to large floor-standing machines.

What is Electric Discharge Machining?

Electric Discharge Machining (EDM) is a manufacturing process that utilizes electrical discharge to obtain a desired shape. Material is removed from the workpiece by a series of rapid and repeated electrical discharges between two electrodes, separated by a dielectric fluid and subjected to an electrical voltage. One of the electrodes is called the tool electrode, or simply "tool" or "electrode", while the other is called the workpiece electrode or "workpiece".

Wire EDM and Die Sink EDM

There are two kinds of EDM, Wire EDM and Die Sink EDM. In Wire EDM (wire erosion) a graphite wire electrode is fed into the cutting area and the graphite electrode is eroded as it machines the workpiece. The work area is submerged in deionized water which functions as an insulator and constantly flushes the conductive material.

Die Sink EDM, uses an electrode and a workpiece immersed in oil or other dielectric fluid. The electrode and workpiece are connected to a suitable power source, creating an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs and small spark jumps occur in the fluid that forms the plasma channel. Vaporized material is then flashed out away from the cutting area.

All of the above are processes that remove excess, raw material from a work-piece, while maintaining close tolerances, to create a finished product. Simply put, it means shaping large pieces of material into more precise items, so that they can meet very exact specifications.

Published by Jun 14, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91Ƶever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91Ƶever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91Ƶever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91Ƶever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree