91ÊÓƵ¹ÙÍø

What is Pad Printing Technology?
Knowledge

What is Pad Printing Technology?

Pad printing refers to a printing method that can print an image onto objects with irregular surface. An image is first photo-burned into the substrate of a copper or steel plate. Ink is placed onto the image on the plate, and the image is transferred onto a silicone rubber printing head. The printing head then transfers the ink to the item to be printed completing the printing transfer process.
Published: May 03, 2022
What is Pad Printing Technology?

What is Pad Printing Technology?

Pad printing technology can print text, graphics, and images onto the surface of irregular objects. For example, text and patterns can be printed onto the surface of mobile phones, computer keyboards, instruments, meters, and many other electronic products.

The Principle of Pad Printing Technology:

The pad printing process is simple. An image is photo-engraved onto a steel (or copper, thermoplastic) plate, and a curved printing head made of silicone rubber material is pressed onto the image. The ink image is transferred from the plate onto the surface of the pad printing head, which is then pressed onto the surface to be printed.

The Development of the Pad Printing Process:

The pad printing process is a special printing technology developed in the 1980s. Because it can print on products with small areas and concave and convex surfaces, it has resolved some of the shortcomings of the screen-printing process, and has been developed rapidly in recent years. With the opening of the China market in the early 1990s, more and more enterprises in traditional industries such electronics, plastics, gifts, and toys, replaced screen printing with pad printing as the main method used for decoration and logo printing.

Application Areas of Pad Printing Technology:

Pad printing is widely used for printing on toys, pens, electronics, electrical appliances, plastics, leather, metal, glass, gifts, hardware, and other products.

The ability of the transfer head to absorb ink and factors influencing printing quality:
  1. The shape of the transfer head: The basic shape of the transfer head is usually round, rectangular, or square. These shapes are suitable for first rolling the surface of the transfer head across the pattern etched on the image plate, and then rolling the transfer head across the surface of the object to be printed. The size and shape of the pattern to be printed, and the amount of pressure to be used during printing, determine the choice of properties for the transfer head to be used.
  2. Transfer head material properties.
  3. The hardness of the transfer head: The harder the transfer head, the better the ink transfer effect. Hardness can be varied by changing the amount of other materials added to the silicone rubber used for making the head.
  4. Surface condition of the transfer head: Ideally, the surface of the transfer head is very smooth and matt; carefully wiping the transfer head with a solvent-saturated gauze can produce good results. If the transfer head shows signs of wear, the transfer head should be replaced, taking care not to damage the surface of the transfer head.

91ÊÓƵ¹ÙÍø to Choose Ink?

Silicone transfer head printing sheet requires ink with high pigment content, fast-drying resin, and fast solvent evaporation. The ability of the ink to become tacky quickly will determine whether the ink can be effectively transferred to the surface of the substrate. At the same time, to adjust the printability and performance of the ink, in addition to adding solvents and catalysts, it is also possible to use any additives, such as viscosity modifiers, antistatic agents, rheology agents, etc. 91ÊÓƵ¹ÙÍøever, the use of additives will have a great impact on the printing performance of the ink, so be careful when using them.

Due to the wide range of materials that can be printed using this process, a variety of inks are available. Silicone transfer head printing ink is expensive due to the small amount needed for printing. Screen-printing ink is not suitable for Pad printing because it does not dry fast enough and has a pigment content of only 5%.

  • One-component ink:
    One-component inks are dried by solvent evaporation, and catalysts are not necessarily added to this ink. One-component inks are available in glossy and non-glossy types, and are mainly used for printing on plastic substrates.
  • Two-component ink (chemically reactive ink):
    Before printing, a catalyst is added to the ink. The catalyst reacts with the resin in the ink to initiate drying of the ink through a polymerization reaction. When two-component inks are used in pad printing, it is necessary to carefully maintain the correct ratio of catalyst to ink, and both are usually measured by weight. Improper mixing ratios of ink and catalyst can lead to printed product defects such as uneven ink adhesion and insufficient durability of the printed image.
  • Bake dry ink:
    Bake-drying inks can be divided into two types; one type is standard two-component ink with additional catalysts; the other is specially formulated for substrates such as glass, ceramics, and metals. Bake-drying inks must be warmed and dried at a certain temperature. When using this ink, the drying time should be calculated. The higher the temperature, the shorter the drying time. 91ÊÓƵ¹ÙÍøever, if the drying temperature is too high, the ink film will become brittle, so the ink should be dried at a temperature that will maintain the flexibility of the ink.
  • Oxidizing ink:
    Oxidating ink absorbs oxygen from the surrounding environment and polymerizes to form an ink film without the need for a catalyst. Typical applications for oxidizing inks are flexible packaging substrates and substrates of synthetic materials such as rubber products or keyboards. Due to the slow drying speed and long time required for oxidation, the use of oxidating ink is limited.
  • UV pad printing ink:
    UV inks are rapidly cured and dried using UV energy. When UV light penetrates the ink, the photosensitive molecules in the ink interact with neighboring molecules to harden. The process is completed in seconds or milliseconds and gives off no volatile fumes. The hardened ink has strong friction resistance, is resistant to acid and alkali, and is environmentally friendly.
Pad printing workflow:
  • Ink is spread evenly over the steel plate with a squeegee.
  • The print head is pushed down onto the steel plate to transfer the ink pattern from the steel plate to the print head.
  • The print head is pushed down onto the item to be printed, transferring the image to the item.
  • The ink is allowed to dry and the item is tested and packaged.

What is the Difference Between Pad Printing and Silk Screen Printing?

  1. While screen-printing can only be used for printing on flat surfaces, pad printing can print on both curved surfaces and flat surfaces. One major advantage of pad printing is that it is suitable for printing large and small products, as well as a variety of strange-shaped products. One disadvantage is that the ink layer is relatively thin.
  2. Silkscreen printing prints the pattern on the substrate by passing ink through a screen that has the image set into it. An advantages of silk screen printing is that it can be used for printing on a much larger plane. The disadvantage is that it is not suitable for special-shaped products, and the ink layer is relatively thick.

Features of Pad Printing Technology:

  • Process cost: Single piece cost, low labor cost, because most of the processes are completed by machining.
  • Application products: Used for surface printing of 3C electronic products, vehicles, interiors, sports equipment, etc.
  • The output is suitable: Single pieces to large batches are available, a single piece can be simply made into ordinary steel plate printing, and large batches can be done by machine.
  • Quality: Sharp print details are achieved, even on uneven surfaces.
  • Speed: A single printing time is about 1-5 seconds, and can be completed by machine.
Published by May 03, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree