91ÊÓƵ¹ÙÍø

What is Metal Injection Molding (MIM)?
Knowledge

What is Metal Injection Molding (MIM)?

Metal Injection Molded (MIM) is a high-tech near-net-shape technology that combines traditional powder metallurgy and plastic injection molding processes.
Published: Oct 25, 2022
What is Metal Injection Molding (MIM)?

What is Metal Injection Molding?

Metal Injection Molding (MIM) is established by fusing plastic injection molding and powder metallurgy techniques. The powder mix consists of a metal and a polymer binder. Using a standard injection molding machine, melt the powder and inject it into the mold. The part then cools and solidifies into the desired shape. The final product is used in many industries such as medical, dental, aerospace, and automotive.

Metal Powder Injection Molding Technology Basics:

Metal powder injection molding technology is the product of the penetration and intersection of multiple disciplines such as plastic molding technology, polymer chemistry, powder metallurgy technology, and metal materials science. MIM technology overcomes the shortcomings of traditional powder metallurgy products such as low density, uneven material, low mechanical properties, and difficulty in forming thin-walled and complex parts. It is suitable for the mass production of small metal parts with complex shapes, high precision, and high-performance requirements.

MIM metal powder injection molding is the addition of a metal, a ceramic powder is carried out in the production of plastic technology, which makes the product generally have high strength, and good wear characteristics. MIM manufacturing metal powder injection molding technology includes feed preparation, injection molding, computer simulation of the injection molding process, debinding, sintering, etc. The processing process is different from traditional injection molding, which requires vacuum sintering.

MIM, or metal injection molding, is a molding technique generally used to manufacture small, thin, lightweight, or complex metal parts that are used in a variety of industries and applications and possess several desirable metal properties. MIM is typically used by customers who require mass production of metal parts that are precise in size, shape, and weight, and durable in function or aesthetics. MIM technology is applied in powder metallurgy or through metal injection molding to metal rods. Equipment required for MIM injection molding: granulator, MIM special injection molding machine, degreasing furnace, sintering furnace, testing equipment, secondary processing equipment, etc.

MIM metal powder injection molding technology is a set of injection molding technology, polymer chemistry, powder metallurgy technology, metal material science, and other interpenetrating cross products. Which can use mold blanks for injection molding, and quickly manufacture high-density, high-precision, high-density through sintering strength, structural components with complex three-dimensional shapes. Especially for small parts that are processed by complex shape processing technology or are difficult to process, MIM metal powder injection molding technology can be freely completed. Metal powder injection molding is a new type of powder metallurgy technology with high technical content, making it more sensitive to the needs of mechanized production, good practicability, and good conversion rate, and has been widely used. The use of mold injection molding blanks and rapid production of high-density, high-precision, three-dimensional complex-shaped structural parts. Through sintering can quickly and accurately materialize design ideas into products with certain structural and functional characteristics, and directly mass-produce parts. It is a new revolution in the manufacturing technology industry.

The Whole Process of MIM Technology:

  • Kneading: Mix the fine metal powder and organic binder uniformly to become an injection material with good rheological properties.
  • Molding: The advanced MIM special injection machine is used to inject the injection material into the mold cavity with the shape of the part to form a blank. The process steps are similar to plastic injection molding.
  • Debonding: The binder is removed from the green body by chemical solvent dissolution and thermal decomposition to become a gray body.
  • Sintering: The ash blank is heated to a temperature lower than the melting point of the basic components in a certain atmosphere, so that the strength and density of the sintered body increase, and it becomes a product and material with good physical and mechanical properties.
  • Post-processing: According to the needs of the product, follow-up processing, such as heat treatment, surface treatment, etc., is carried out.

MIM Technical Advantages:

  • Added complexity, thinner, stiffer, denser, and more flexible designs.
  • Better mechanical properties and strength than CNC machining and casting.
  • More efficient than CNC machining, less waste is generated in the process, and most of them can be recycled or reused.
  • Better surface finish than casting and traditional forging.
  • Widely used in different metals and advanced materials.

Application Areas of MIM Technology:

  • Computer and its auxiliary facilities: Such as printer parts, magnetic cores, striker pins, and drive parts.
  • Tools: Such as drill bits, cutter heads, nozzles, gun drills, spiral milling cutters, punches, sockets, wrenches, electrical tools, hand tools, etc.
  • Household appliances: Such as watch cases, watch chains, electric toothbrushes, scissors, fans, golf heads, jewelry links, ballpoint pen clamps, cutting tool heads, and other parts.
  • Parts for medical machinery: Such as orthodontic frames, scissors, and tweezers.
  • Military parts: Missile tail, gun parts, warhead, medical cover, fuze parts.
  • Electrical parts: Electronic packaging, micro motors, electronic parts, sensor parts.
  • Mechanical parts: Such as cotton loosening machines, textile machines, crimping machines, office machinery, etc.
  • Parts for automobiles and ships: Such as clutch inner ring, fork sleeve, distributor sleeve, valve guide, synchronous hub, airbag parts, etc.

Difference Between MIM and Casting:

Metal injection molding is suitable to produce small and complex metal parts that cannot be produced by traditional processes. This is not a problem if the part has intricated, thin, or fine design details. The metal does not melt in the MIM process as you know it in the metal casting process, extending tool life.

Why choose MIM overcasting? The biggest difference between casting and metal injection molding is that casting uses aluminum alloys or zinc alloys as raw materials. Metal injection molding, on the other hand, uses steel or other types of suitable MIM alloys. The most common are stainless steel, titanium, nickel, tungsten, copper, and combinations thereof. At the end of the die-casting process, the excess metal must be trimmed manually or passed through a different mold. This creates a lot of waste and requires extra time, which is not the case with MIM processes. Both MIM and casting have their technical advantages and disadvantages, and the right solution can be selected based on product or part design, batch, and production run requirements.

Published by Oct 25, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree