91ÊÓƵ¹ÙÍø

What Is A Reducer?
Knowledge

What Is A Reducer?

With the constant development of modern technology, the power output of equipment, such as internal combustion engines and motors is getting stronger and stronger. To attain the full efficiency of these power sources, reducers are incorporated.
Published: May 20, 2021
What Is A Reducer?

What Is A Reducer?

A mechanical reducer is an independent closed transmission device between the prime power source and the working machine, used to reduce the speed and increase the torque to meet the needs of various machines.

For industrial manufacturing, the main function of the reducer is to decelerate a machines operation, that is, to reduce the speed of machinery. Reducing the speed in turn increase the torque. It is used along with electric motors, internal combustion engine, and other high-speed power sources. The input shaft, which has a gear with a small number of teeth on it, is meshed with a gear on the output shaft which has a larger number of teeth on. When the input shaft rotates at a high speed, the motion is transferred to the output shaft, which rotates at a slower speed.

The reducer has a wide range of industrial applications. The reducer is used for decelerating and increasing torque, so is widely used in speed and torque conversion equipment. For example, gear reducers can be seen in almost all types of mechanical transmission systems, from vehicles, ships, automobiles, locomotives, and heavy machinery used in construction. It is also used in the machinery industry, such as for processing machines and automated production equipment, as well as for common household appliances, clocks, and watches. 

Overview of the Operation Principle of A Reducer

The reducer is a type of transmission. The principle is to engage the electric motor, internal combustion engine, or other high-speed power source through a gear mechanism to reduce the rotation speed of a machine device. The ratio of the number of teeth on the large gear with the number on the small gear is the reduction ratio (transmission ratio).

Reducer can be composed of any of a variety of gears such as worm gear, cycloid gears, planetary gears etc., and are usually enclosed in some type of rigid case.  Gear shape can be divided into cylindrical gears, bevel gears, and conical-cylindrical gears. Transmission arrangement can be divided into expansion type, spur-flow, and co-entry shaft reducers. Reducers can also be divided into single-stage and multi-stage reducers according to the number of transmission stages.

The Difference between A Geared Motor and A Reducer

Reduction motors, also known as gear reduction motors and gear motors, are modular combinations. They combine a motor and a reducer. 

Electric motors have varying speeds, which generally corresponds to the number of poles in the motor. For example, the output speed of a motor with 4 poles using 60 Hz power source will run at around 1800rpm, 6 poles at around 1200rpm, 8 poles at around 900rpm. Motors with a higher number of poles are more expensive, run slower and have higher torque. As common motors generally use 4 poles, instead of buying a more expensive motor with more poles, the 4-pole motor can be used along with a reducer to get the same speed and torque of a motor with more poles. The reducers used for this purpose are generally relatively small. 

The Benefits of Using Reducers

If a high torque is needed for some type of work, you may need to increase the size of the motor, or use a motor that uses a higher current. This will increase the overall cost of the system. The size of the motor will also be larger, increasing the space requirement for the equipment. But if a reducer is used, the torque can be increased without the need to invest in a larger motor and with only a small increase in the size of the system.

Common Types of Reducers

  1. Single-stage cylindrical gear reducer:

    A single-stage cylindrical gear reducer is suitable for a reduction ratio of 3~5:1. The gear teeth can be straight, helical, or herringbone shape. The gear box is usually made of cast iron or welded steel plates. Roller bearings are commonly used, and sliding bearings are only used for heavy loads or extremely high speeds.

  2. Two-stage cylindrical gear reducer:

    Two-stage cylindrical gear reducers are divided into three types: expansion type cylindrical gear reducer, split type cylindrical gear reducer, and coaxial type cylindrical gear reducer, and are suitable for reduction ratios of 8-40.

  • Expansion style: High-speed or low speed helical gears with long shafts. Because the torque input and output ends are far away from the gear meshing area, and due to the asymmetrical arrangement of the gear relative to the bearing, there is uneven distribution of load along the tooth width caused by the bending and deformation of the shaft. To reduce the uneven distribution on the gears, high rigidity is required for the shaft.  A simple structure is most widely used.
  • Spur type: Generally used for high-speed applications. Because the gears are arranged symmetrically, they can be used where the force on the gear and the bearing will be large. To make the total axial force on the shaft smaller, the helix directions of the two pairs of gears should be opposite. This structure is more complicated, and it is often used in places with high power and variable loads.
  • Coaxial type: The axial size of the reducer is larger, the intermediate shaft is longer, and the rigidity is poor. When the oil immersion depths of the two large gears are similar, the load-carrying capacity of the high-speed gears cannot be fully utilized. These gears are often used in places where the input and output shafts are coaxial.
  • Single-stage bevel gear reducer:

    A single-stage bevel gear reducer is suitable for a reduction ratio of 2~4:1. The transmission ratio should not be too large to keep the size of the bevel gear required low, and to facilitate load transfer. Bevel gear reducers are used in transmissions where two axes intersect perpendicularly.

  • Conical and cylindrical gear reducer:

    Conical and cylindrical gear reducers are suitable for reduction ratios of 8-15:1. These gears work best for high-speed applications where small size bevel gears are used. Bevel gears can have straight or curved teeth. Cylindrical gears are usually made with helical teeth, which can offset part of the axial force of bevel gears.

  • Worm gear reducer:

    There are mainly cylindrical worm gear reducers, arc toroidal worm gear reducers, conical worm gear reducers, and worm gear reducers, among which cylindrical worm gear reducers are the most used.

  • Worm gear reducer is suitable for a reduction ratio of 10~80. The structure is compact, the transmission ratio is large, but the transmission efficiency is low, and it is suitable for the occasions of small power and gap work. When the peripheral speed of the worm is V≤4~5m/s, the worm is under-mounted, and the lubrication and cooling conditions are better; when V≥4~5m/s, the agitation loss of the oil is larger, and the worm is generally the upper-mounted type.

  • Planetary gear reducer:

    Due to the structure of the planetary gear reducer (planetary reducers), the minimum single-stage reduction is 3, and the maximum generally does not exceed 10. The common reduction ratio is 3/4/5/6/8/10, and the number of stages of the reducer generally does not exceed 3, but some are large. The reduction ratio custom reducer has 4 levels of reduction.

    Compared with other reducers, planetary gear reducer has high rigidity, high precision (single-stage can be within 1 minute), high transmission efficiency (single-stage 97%-98%), high torque, volume ratio, lifetime maintenance-free, etc. features. Because of these characteristics, planetary reducers are mostly installed on stepper motors and servo motors to reduce speed, increase torque, and match inertia.

Published by May 20, 2021 Source :, Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree