91ÊÓƵ¹ÙÍø

What are Turbine Blades?
Knowledge

What are Turbine Blades?

Turbine blades are an important component of the turbine section in a gas turbine engine. The high-speed rotating blades are responsible for drawing high-temperature and high-pressure air into the burner to maintain the engine's work.
Published: Nov 29, 2022
What are Turbine Blades?

What are Turbine Blades?

Blades play the most important role in an aero-engine, without which an aero-engine cannot produce thrust. Aeroengine blades are further divided into turbine blades, fan blades, and compressor blades. The turbine blades are further divided into high-pressure turbine blades, low-pressure turbine blades, and guide turbine blades. Compressor blades are divided into high-pressure compressor blades and low-pressure compressor blades. One of the factors that determine the thrust of the engine is the performance of the high-pressure turbine blades.

To ensure stable and long-term operation in extreme high-temperature and high-pressure environments, turbine blades are often forged with high-temperature alloys and cooled in different ways. Such as internal airflow cooling, boundary layer cooling, or thermal barrier coatings to protect the blades. Ensure reliability during operation. In steam turbine engines and gas turbine engines, blade metal fatigue is the leading cause of engine failure. Strong vibration or resonance may cause metal fatigue. Engineers often use frictional dampers to reduce damage to the blade from these factors.

What is a High-pressure Turbine Blade?

High-pressure turbine blades need to withstand high temperatures above 1500 degrees, which is equivalent to the centrifugal force and aerodynamic force, corrosion, load, etc. of 2,000 times the blade's weight. Therefore, high-pressure turbine blades are required to have the characteristics of high-temperature resistance, high strength, and corrosion resistance. To make the high-pressure turbine blades have the above performance, special materials are used in the manufacture.

CNC blade processing:

Commonly known as a forged turbine, it refers to the intake side blade made of 7075 forged aluminum alloy. The biggest advantage is that it has high strength and a thinner blade, and it can be made thinner and longer near the axis, so at the same speed, The lower can generate higher air volume, thereby generating greater power output. The efficiency of turbine blades processed by aluminum alloy CNC is better, but in fact, almost all turbines seen on the market use ordinary cast blades. The main problem lies in the consideration of cost and technology. The blades produced by casting are not only the cost is low, but the manufacturing speed is also fast, and mass production can be carried out. 91ÊÓƵ¹ÙÍøever, the turbines manufactured with such blades often meet the general mass production requirements, and the performance can only be said to be average, but it is also sufficient for general occasions.

To manufacture forged CNC blades, it is necessary to use five-axis CNC machines that cost nearly 10 million yuan. 91ÊÓƵ¹ÙÍøever, there are not many such machines in China, and most of them are used to manufacture aerospace or military supplies. In the past, it was controlled by the government because it was a necessary tool for manufacturing aerospace parts and military weapons. You must have a relevant industrial background to introduce five-axis CNC. The so-called forged CNC blades use forged aluminum materials that are stronger than ordinary cast aluminum alloys, and then use CNC to cut the aluminum materials into turbine intake side blades. 91ÊÓƵ¹ÙÍøever, this manufacturing method is not only expensive, but also technically difficult, because the angle of the turbine blade is quite complicated, and generally three-axis and four-axis CNC machines cannot be cut out, and more expensive ones must be used. Five-axis CNC can manufacture blades with complex shapes.

Aeroengine Turbine Blade Cooling:

  1. Why cooling?
    If the temperature in front of the turbine is 1600K, and the temperature resistance of the turbine blade material is only 1200K, will such material work? The answer is yes, but with advanced cooling technology. Taking the civil turbofan engine as an example, the difference between the temperature before the turbine and the tolerance temperature of the blade material has increased to more than 500K. Cooling technology is crucial to aero-engines. Although the material has been limited, the performance of the turbine and the life of the turbine blades can be improved through advanced turbine cooling technology. The turbine in the early engines did not use cooling technology, but the temperature in front of the turbine was not very high at that time. The development of cooling technology came from a contradiction. The development of turbine blade materials lagged behind the performance of aero engines (temperature in front of the turbine). Although the gas temperature before the turbine cannot exceed the tolerance value of the material, the introduction of turbine cooling technology has completely changed this situation and promoted the development of turbine cooling technology.
  2. What are the cooling methods of turbine blades?
    In the field of aero-engines, convective cooling, impingement cooling, film cooling, and divergent cooling have been developed successively. The purpose of cooling is to increase the temperature before the turbine to improve engine performance, make the temperature field in the blades evenly distributed, and reduce thermal stress.
    • Convection cooling:
      Convective cooling is one of the cooling methods widely used today. The cooling air passes through several special passages inside the blade, and through this convection, it exchanges heat with the inner wall of the blade, so that the temperature of the blade is reduced to achieve the cooling effect, and the cooling effect is 200°C to 250°C.
    • Impact type:
      Impingement cooling is spray cooling, which uses one or more cooling air jets to face the surface to be cooled to enhance the local heat transfer capacity, and is suitable for enhanced cooling in local high-temperature areas, such as spray cooling at the leading edge of the blade was adopted first. In principle, impingement cooling still belongs to convective cooling.
    • Film cooling:
      The cooling air enters the inner cavity of the blade from the end of the blade, and the air film cooling turbine blade is designed and manufactured with many small holes. The high-temperature gas is separated to achieve the purpose of cooling the turbine blades.
    • Divergent cooling:
      Divergent cooling (sweat cooling) is a type of turbo-cooling technology in which the cooling air permeates from the inner cavity of the blade through numerous micropores on the wall of the blade, just like sweating. It is a hollow blade made of high-temperature alloy porous laminates, and the high-pressure cooling air flows out of the inner cavity of the blade through the dense pores on the wall and flows to the outer surface of the blade. A complete and continuous cavity heat insulation layer is formed between the high-temperature gas and the surface of the blade. It can not only completely separate the surface of the blade from the gas but also absorb part of the heat on the surface of the blade. Using this cooling method, the blade can be the material temperature is close to the cooling air temperature.
      The technical problems faced by this cooling method are that the porous material is easily blocked after oxidation, each layer needs to be porous, the holes are not easy to align, and the process is complicated. For every 100°C increase in the temperature before the turbine, the performance of the engine will increase by at least 10% under the condition that the engine size remains the same. This is why the temperature before the turbine becomes an important indicator to measure the quality of the engine.
Published by Nov 29, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree