91Ƶ

Industry 4.0 Wave, Taiwan's Rubber and Plastics Industry Develops Innovative Business Opportunities Towards Circular Economy
Trend

Industry 4.0 Wave, Taiwan's Rubber and Plastics Industry Develops Innovative Business Opportunities Towards Circular Economy

According to GLOBAL TRADE ALTAS statistics, the boom of the rubber and plastics industry has rebounded due to the growth of the aerospace and automotive industries and the market demand for consumer goods. With the economic growth of Asian countries, the Asia-Pacific region has become the largest and fastest-growing region in the world's plastic and rubber industry. About 40% of plastic and rubber machinery is manufactured in Asia. The fourth industrial revolution combines machinery and information and communication, both of which are the most advantageous industries in Taiwan. Taiwan's plastic and rubber machinery industry combines these two advantages and applies smart manufacturing new business models to strengthen competitive advantages and seek to create niche points. New business opportunities have brought Taiwan's plastics and rubber machinery industry to a new peak.
Published: Jun 08, 2022
Industry 4.0 Wave, Taiwan's Rubber and Plastics Industry Develops Innovative Business Opportunities Towards Circular Economy

Taiwan's Rubber and Plastics Industry Develops Innovative Business Opportunities

The international trend of Industry 4.0 recreates the development of the rubber and plastics industry. Germany is the most important production and export country for rubber and plastics machinery manufacturing. Although the European rubber and plastics machinery market is mature, Asia will still be a global manufacturing production base in the future. Along with the relatively fast economic growth rate in Asia, the demand for rubber and plastics machinery is increasing, and it is estimated that Asia will be the focus of the rubber and plastics machinery market.

Rubber and plastic machinery are one of the four major machinery industries in Taiwan. About 98% of Taiwan's rubber and plastic machinery manufacturers are small and medium-sized enterprises, and 90% of these enterprises are concentrated in Tainan, Taichung, Hsinchu and other regions. The main export markets are still in Asia, including mainland China, Southeast Asia, Japan and other countries. Taiwan is one of the world's top six exporters of rubber and plastic machinery, with an export value of 1.17 billion US dollars in 2018.

Over the past 40 years the Taiwan government has encouraged the development of upstream chemical plants, along with private middle and downstream basic raw material industries, in order to form a complete industrial chain that will promote the vigorous development of downstream plastics, rubber, chemical fiber, and chemical industries. One major focus of the rubber and plastic industries is the automobile industry, which on the average uses approximately 200 kgs of rubber and plastic materials in the tires and interior for each car.

With the rising awareness of environmental protection, along with the rise in global crude oil prices, rubber and plastics manufacturers are introducing green designs, energy-saving processes, and using and recycling biomass materials.

Improvements in process efficiency and pollution reduction of plastic products has become an important issue for the rubber and plastics industry. As a result of the global pandemic, due to the reduction of personnel contact, mechanical automation and cloud services have become the new normal in the industry. Taiwan Rubber Plastic machinery manufacturers quickly took precautionary measures to introduce the Industrial Internet of Things and environmental protection processes, creating new opportunities for relevant global players to shape the industry.

Taiwan's rubber and plastic machinery industry is export-oriented. After years of development, the injection molding industry has moved into a new phase of change, adopting Industry 4.0. Research and development is focusing on reduction of waste, reduction of energy consumption, improved manufacturing efficiency, and improved quality of recycled raw materials. Identification, analysis, and application of biomass composite materials, as well as energy saving technology and green energy (wind energy, solar energy) technology, etc., are creating new business opportunities.

Development Trend of New Plastic and Rubber Materials

In the past ten years, international plastic processing and material technology has seen new innovations in many application fields. Five important areas being focused on include: Green - environmental protection, Recycle – recycling and reuse, Advance – advanced innovation, Smart – intelligent design, Safe – safety and sustainability. These technological development concepts, although independent, are interrelated, and the many high-value products being created will deeply affect our future lifestyle and quality.

Green - environmental protection

The so-called green process covers at least three manufacturing areas: more efficient production processes, more cost-effective designs, and more environmentally friendly material applications. Developments represents a commitment to saving resources, and using less materials, less energy, and less manpower. With the implementation of Industry 4.0 smart manufacturing, many applications of biomass materials and technologies for energy saving and carbon reduction came into use.

Recycle – recycling and reuse

To promote a more circular economy, the 6R principles of product Reuse, Recycle, Reduce, Recovery, Repair, and Redesign were introduced to enhance the green value of products and prolong product life cycles. It is not just a slogan or method to reduce costs, but a way of ensuring sustainability, improving technology, and creating value. Recycling and reuse of low-carbon, new materials (low pollution, low toxicity, low carbon emission) have become an important part of supporting the circular economy.

Advance  – refinement and innovation

More and more chemical material technologies are being used in the development of high-end, high-value, new materials, and are being integrated into more convenient designs, smarter manufacturing processes, and more advanced green energy technologies. Typical examples are: high-end elastomers widely used in sports and leisure that emphasize recyclability; biomedical materials using cutting-edge, fiber-reinforced composite materials that are lightweight and energy-saving; rail vehicles using construction material originally used in aerospace and defense. These higher-value industrial components are impacting people's lives.

Smart  –  smart design

If we look around, we see that we are surrounded by polymer materials. Whether food, clothing, housing, or transportation, we are immersed in colorful polymer materials. If the 20th century can be known for synthetic materials, the 21st century will be known as the era of intelligent materials. As the name suggests, new material design will escape traditional thinking and cleverly uses various molecular structures or materials to seemingly impart “wisdom” into ordinary plastic materials. The material can respond to various external stimuli such as light, electricity, pressure, humidity, acid-base, etc. and make a corresponding response.

Such materials can memorize, restore or even change the original configuration, and can also produce specific changes in function, such as: viscosity, fluidity, color, mechanical strength and even volume. This new generation of plastic materials will bring product designers another imagination space where they can be creative and make break-throughs in existing applications.

"Smart" chemical materials such as shape memory polymers can aid in medical corrective applications. Traditional, thick, non-recyclable materials such as gypsum have been replaced with smart glue that can change its viscosity, greatly improving the ability of products to be disassembled, classified and recycled.

High-strength, shape memory polymers can be made into baffles, bumpers, and other components for use in cars. After the car crashes, the deformed part can be restored to its original shape by heating it with hot air. Shape memory materials can be designed to regulate insulin release for controlling blood sugar concentrations in implantable arterial stents. It can be used it designing artificial skin, artificial organs and other medical applications. Materials that improve flight and driving efficiency, smart building materials that reduce climate dependence, multi-functional textiles, memory materials and biological passports are other shape memory polymer applications.

Safe  –  safe and sustainability

In recent years, turbulent food safety incidents have affected consumers' confidence in food supplies, and consumers are paying more attention to food quality and safety. Due to changes in environment, temperature, and humidity during transportation, storage, and use, microorganisms multiply, and active ingredients are decomposed or oxidized and deteriorated. Food containers and packaging materials are being designed that will provide more reliable lines of defense against food contamination.

Published by Jun 08, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree