91ÊÓƵ¹ÙÍø

Motion Control Systems in Factory
Knowledge

Motion Control Systems in Factory

Motion control encompasses every technology related to the movement of objects. Motion control is also referred to as Servo Control or Robotics and is implemented in industrial processes to move specific loads in a controlled way. It is the core technology of factory automation and is the real-time management of the position and speed of mechanical moving parts according to the expected motion trajectory and specified motion parameters.
Published: Aug 18, 2022
Motion Control Systems in Factory

Motion control is the core technology of factory automation, which originated from the early servo control. Simply put, motion control is the real-time management of the position and speed of mechanical moving parts, so that they can move according to the expected motion trajectory and specified motion parameters.

This technology can be applied to industrial machinery and high-precision CNC machine tools that require precise positioning control or speed control. In industries that require high product cutting precision, a well-functioning motion control system is indispensable, such as: automobile, solar energy, semiconductor, electronic industry, etc.

The establishment of the motion control system must integrate various software and hardware technologies, which not only requires theoretical performance evaluation, but also considers the operating characteristics of the machine itself in actual operation. Whether the operation of the industrial machine can be carried out, in addition to the system The basic functional requirements include controlling the position and speed of each axis. Cost, system stability, frequency of use, warranty service, scalability and compatibility with other software and hardware are all factors to evaluate motion control systems.

Motion control system in recent years, with the development of the Internet, different operation modes have been developed. Machines and equipment can be connected to the whole plant equipment for real-time monitoring and manipulation during operation. The PLC motion control mode in the past was due to PLC controllers are also gradually replaced by PC-Based controllers.

If the controller is divided by structure, the controllers currently seen in the industry can be roughly divided into two types: PLC-Based and PC-Based. PLC-based technology and PC-based technology are two representative control technologies in the field of automatic control, and the technology origin and development of the two are quite different.

PLC was produced in the early 1970s, and its main functions are only simple logic sequence control functions. Once the PLC appeared, it showed strong vitality with its high reliability, small size and intuitive programming mode, and became the mainstream product in the field of automatic control.

PC-based is more used for monitoring the running status of equipment. Compared with PC-based, PLC-based has the advantages of flexible configuration, small size, adaptability to harsh environments, strong anti-interference, and high reliability, but it is worse than PC-based in terms of software functions and system openness.

With the continuous development of computer technology and control technology, PLC-based and PC-based are absorbing each other's advantages to adapt to more applications. For example, the application of PLC in packaging equipment is far more than the application of PC-based in packaging equipment. PC-based is a control system based on PC technology.

The earliest PC-based control system is based on the industrial computer, and PC-based has advantages in computing, storage, and software openness. There are obvious differences in technical characteristics between PLC-based and PC-based. PLC has small size, low power consumption and strong anti-interference ability; it has high reliability, and its average failure rate interval can reach 500,000 or even 1 million hours; it has a simple and intuitive programming mode.

And PC-based has powerful computing power and has open standard system platform and PCI interface, beautiful and low-cost display technology. But the reliability of the system is slightly worse, for example, the average time between failures of IPC with better performance is about 50,000 hours. 91ÊÓƵ¹ÙÍøever, with the advent of the PC and network era, industrial PC or PC-based controllers have gradually replaced the active industrial automation in the past due to the basic characteristics of network systems, that is, high performance, low price, system openness, and basic advantages. PLC in the control area.

Because PC-based products have the basic characteristics of the network, PC-based controller products have strong vitality and develop rapidly as soon as they come out. Some people say that PC-based controllers will replace traditional PLC-based controllers. Of course, security and stability issues must be resolved first.

In recent years, these problems have been basically solved, and PC-based controllers can be similar to PLC-based controllers in terms of appearance and reliability. The introduction and widespread adoption of the IEC61131-3 programming language standard has paved the way for the rapid development of PC-based controllers. In this way, PC-based controllers not only have the advantages of PC, but also have the advantages of traditional PLC. It can be seamlessly integrated into the information system of the Internet age.

With the advancement of PCs and networks, many applications related to digital systems have also advanced rapidly. Microcontrollers with high-speed computing speed such as single-chip and digital signal processors are continuously introduced into the distributed control system, which makes various application systems gradually move towards the trend of professional division of labor. Among them, the motion control system is a good case.

Published by Aug 18, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree