91ÊÓƵ¹ÙÍø

The Pursuit of Low-Error and High-Precision Machine Precision
Knowledge

The Pursuit of Low-Error and High-Precision Machine Precision

To maintain the accuracy of finished products in the manufacturing industry, rapid detection and adjustment of machine tool performance is essential.
Published: Jan 21, 2022
The Pursuit of Low-Error and High-Precision Machine Precision
Definition of precision:

Generally speaking, accuracy refers to the ability of the machine tool to position the tool's nose point to the programmed target point. 91ÊÓƵ¹ÙÍøever, there are many ways to measure this positioning capability, and more importantly, different countries have different regulations.

  • Japanese machine tool manufacturers: When calibrating "accuracy", JISB6201 JISB6336 or JISB6338 standards are usually used. JISB6201 is generally used for general-purpose machine tools and ordinary CNC machine tools, JISB6336 is generally used for machining centers, and JISB6338 is generally used for vertical machining centers.
  • European machine tool manufacturers: Especially German manufacturers, generally adopt the VDI/DGQ3441 standard.
  •  American machine tool manufacturers: Usually use the NMTBA (National Machine Tool Builder's Assn) standard.

Error sources and precision challenges of machine tools:

The final accuracy of a machine is shown by the accumulation of all possible errors.

Nowadays, the precision machinery industry has higher and higher requirements for the accuracy of finished products. In intelligent machinery and manufacturing research technology, predicting processing quality through machine conditions is an important development topic. 91ÊÓƵ¹ÙÍøever, regardless of the type, specification, workload, and working accuracy of the machine tool, even for the most excellent CNC machine tool, the positioning accuracy will gradually decrease over time, resulting in errors. Therefore, to ensure consistent quality of components, reduce material waste, and achieve higher production efficiency, rapid inspection and adjustment of CNC machine tool performance is necessary.

The sources of error in tool machining performance are:

  1. Error of mechanical structure:
    The movement of the structure under its weight and load will cause the material to deform to different degrees, resulting in errors; the size of the structural error can be known by the finite element method analysis during design.
  2. Error of transmission system:
    The error of the fitting clearance between the screw, the line rail, and the slider, as well as the C1 level screw pitch should be within 5μm, and the highest level of the line rail (UP level) should have an error of less than 2μm between its two parallel surfaces. 91ÊÓƵ¹ÙÍøever, for high-precision machinery, the whole machine design and assembly needs to find a way to eliminate these total errors and to achieve the final high-precision requirements within ±3μm.
  3. Error of feedback and control:
    The controller commands the output to drive the motor and uses the optical scale to receive feedback. The best existing optical scale guarantees that the error can be maintained within 3μm, but this error is determined by the accuracy of the optical scale. As long as there is no problem with the optical scale assembly, the error is fixed and can be eliminated by the error compensation of the controller.
  4. Assembly error:
    The straightness, perpendicularity, parallelism, flatness of the machine, and the total error of each part and moving component are generally maintained within 5μm, which is a good error range.
  5. Error of temperature:
    Every time the temperature rises by 1°C, it will affect the amount of deformation of iron by 11.7μm /m. During the processing, local thermal deformation occurs due to the conversion of energy, resulting in thermal deformation of the tool or workpiece, requiring compensation by the machine tool. Even with the thermal compensation function, it is only a large-scale compensation, and cannot be used for small-area compensation. The best method for high-precision machining is to control the temperature rise of the machining so that the change is less than 0.5 °C so that the accuracy can be maintained.
  6. Deformation of materials:
    After the material is cast, there will be extensive internal deformation, and if the material is not tempered its deformation can be large. Material conditioning is required.
  7. Fixture and human operation error:
    Whether the fixture is symmetrical during processing, whether the clamping force is uniform, and whether there is vibration in the environment or other interference factors will affect the processing accuracy.
  8. Other errors (such as measurement or environmental factors):
     In the design of the whole machine, it is necessary to consider that the total median error value should be offset by differences of positive and negative errors. Errors can be reduced by compensation, thus improving the overall accuracy of the machine. The real difficulty is that these errors vary, that is, the distribution range of their standard deviations is too large to be controlled. With dozens of error sources, to maintain a total error variation of ±3μm, the variation of each error needs to be controlled within 1μm.  Maintaining the overall machine accuracy by controlling these many error sources is the difficult challenge.

Therefore, Taiwan's machine tool industry must continually improve as a whole. To beat competition, machine production factories as well as component and machining suppliers and partners must work together to improve manufacturing accuracy.

Published by Jan 21, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree