91ÊÓƵ¹ÙÍø

Industrial Automation Trends: The Growing Importance of Edge Computing
Trend

Industrial Automation Trends: The Growing Importance of Edge Computing

Edge computing will grow in importance as manufacturers see the development of the Industrial Internet of Things (IIoT). The interconnected factory, designed for manufacturing automation, will become an essential corporate goal.
Published: Mar 17, 2022
Industrial Automation Trends: The Growing Importance of Edge Computing

The digital transformation of the industrial network edge continues:

With the continuous pursuit of improvement and innovation for business processes, edge computing, supported by the Industrial Internet of Things, has become widely recognized and applied. The industrial network edge is the point where information technology (IT) and cloud-based applications intersect with the operational technology (OT) environment. Edge computing is expected to become a "foundational technology" that is expected to be adopted by up to 90% of industrial enterprises by 2022.

Connectivity requirements continue to escalate as data-hungry analytics and other enterprise applications require reliable, pervasive information from OT assets, processes, people, and other components. Application requirements in critical areas, such as latency, security, and local execution, are constantly being tested for improvements in edge capabilities. The roles of various edge components have also evolved, including expanding computing and storage capabilities in "thick edge" devices, and the continued convergence of IT, OT, and security on a network-centric "thin edge". A growing number of mobile and autonomous devices such as robots and Automated Guided Vehicles (AGVs), are integrating edge computing with cloud computing, the Industrial Internet of Things (IIoT), artificial intelligence, big data analysis, and 5G. The IIoT Edge is taking its place alongside these key technologies.

Edge-to-cloud integration, edge computing, and convergence of IT, OT, and security within the industrial network infrastructure layer:

From cloud computing, Industrial Internet of Things (IIoT), artificial intelligence, big data analysis to 5G networks, edge computing can be said to be one of the key technologies.

  • The IIoT edge is considered a key enabler of digital transformation strategies.
  • The Industrial IoT edge continues to evolve in response to the escalating demands of data-driven digital transformation strategies.
  • Computation-centric, thick-edge devices are going in a different direction than network-centric thin-edge components.
  • Edge-to-cloud integration and edge computing remain largely the domain of thick-edge devices, which are defined by their greater computing and storage capabilities.
  • IT/OT convergence, especially the convergence of automated control, centralized management, and security, is most prominent at the thin network-centric edge.
  • The thin edge remains a dynamic environment in terms of emerging network alternatives, seeing a constant introduction of new technologies and standards.

Different requirements for the digitally transformed industrial network edge:

Customers pursuing a digital business improvement strategy need a deeper understanding of the entire enterprise, as well as broad connectivity across all devices and services. Cloud-based solutions for analytics, machine learning, service-oriented revenue streams, automation control devices, and other applications located at the Edge will generate meaningful data to create business value.

Edge capabilities can accelerate the implementation of a full range of connected products, processes, and services. Edge is capable of reducing response times when sending data to the cloud. Edge devices play a key role in supporting OT environments by providing integration and isolation from higher-level architectures. This is reflected in better connectivity and OT-friendly visualization and security.

The industrial network infrastructure segment at the IIoT edge is the flashpoint for delivery and increasingly transforms data and information between physical assets and processes into digital transformation applications. Continued improvements in network performance, driven by standardization and innovation, and an increasing emphasis on integrated operational security, drive the dynamic nature of the architecture.

Edge capabilities can accelerate the implementation of a full range of connected products, processes, and services. Edge is capable of reducing response times when sending data to the cloud. Edge devices play a key role in supporting OT environments by providing integration and isolation from higher-level architectures. This is reflected in better connectivity and OT-friendly visualization and security.

Cloud computing and edge computing technologies complement each other:

Cloud computing provides enterprises with computing, storage, and network services. In hybrid cloud architecture, edge computing is the intermediary between devices, clouds or data centers. It is mainly used to access device data and provide instant analysis as a transmission pipeline between the data source and the cloud to reduce round trips. Since the edge can process and filter the data that needs to be sent to the cloud, it can also reduce bandwidth costs. The local processing characteristics of edge computing help enterprises gain local data and dominance. In the future technical environment, edge computing can be regarded as an extension of cloud architecture. In the hybrid structure, the functions of traditional cloud computing and edge computing can be combined, and both parties can make up for their respective weaknesses.

Cloud computing relies on being connected to a centralized data center, so requires more time to receive data from the computing end. Conversely, edge computing is that at the "edge" of the network, so data is processed nearby, saving the time of connecting to the data center.  Shortened response times are necessary for such applications as in Automated Guided Vehicles where immediate information processing would be necessary to reduce the risk of car crashes. For retail, medical, and other industries, where IoT is relatively mature, edge computing can help reduce latency.

What is a thick edge?

Edge-to-cloud integration, edge computing, and cloud-native architectures

Digitally transformed businesses have more opportunities to fully use IT, cloud-native technologies, and IP-based networking by moving closer to the edge. Enterprise cloud architectures are also transitioning to using the edge as their primary data source, and for overcoming cloud limitations.

Data processing at the edge reduces cloud service charges for data-intensive installations and can address concerns about the deployment, scale, and management complexity of cloud-based solutions. The edge layer can also be used to generate, access, and process data that is too difficult, expensive, or slow to access, or to bypass the control system architecture and send data directly to the cloud.

Edge computing can deliver concrete business outcomes in areas such as reducing machine downtime and maximizing asset utilization. This pursuit has expanded to related capabilities related to AI, AR/VR, machine vision, and video analytics. Extensive data preprocessing and reliability requirements, along with the need for local output, are pushing the execution of these applications to the edge. Analytics, video, machine learning, and similar applications require powerful data collection and computing power, making direct integration with enterprise clouds prohibitive from a cost and performance standpoint. The resulting upgrade in edge computing and storage capabilities is driving the use of the thick edge, including in IPCs, edge servers, and industrial IoT gateways and routers.

Standardization of IP-based wired and wireless networks is eliminating the need for hardware-based protocol translation, especially in new installations, and driving container-based application-layer protocol translation. These devices contain a lot of memory and provide software support for containers. Gateway and router vendors continue to add computing capabilities to their devices. As a result, the value focus of the industrial IoT gateway and router market has evolved from one based on automated protocol conversion to one that relies more on differentiation through software-enabled functions and application execution, including edge-to-cloud integration and edge computing.

5G + edge computing promotes lag-free audio and video entertainment experience:

5G networks are transforming the manufacturing, healthcare, retail, and automotive industries. The infrastructure running on telecom provider facilities connected via 5G networks has low latency. Telecom providers are moving towards a multi-tenant, managed infrastructure layer that bridges the gap between cloud and end-users.

In recent years, cloud computing has been integrated into almost everyone's life. We place an order from an app on a smartphone and receive the item a few hours later at the specified time and address. We use Netflix to watch series and movies on our phones and Spotify to listen to music almost anywhere in the world. Next, 5G and multi-access edge computing will affect the technological innovation progress of enterprises and consumers in the next few years, especially 5G applications such as games and AR/VR/UHD streaming media for the vast consumer market. What is expected is an audio-visual entertainment experience with richer sound and light effects and no delay.

Edge computing market outlook:

As the network connects industrial environments more closely, edge computing will become important for the management of enterprise automation equipment and remote capital equipment monitoring. Emerging technologies will accelerate the development of data processing equipment, automated robots, self-driving cars, smart factories, traffic management etc. Large enterprises and telecom service providers will continue to build the IIoT to deploy enterprise-specific wireless networks for Industry 4.0, automated mining, precision agriculture, smart healthcare, and smart retail development.

Edge computing is at the core of the Industrial Internet of Things (IIoT), and is an important key for enterprises wanting to accelerate their journey into Industry 4.0. The edge must provide secure access to docked devices, monitor operational conditions, detect and remotely troubleshoot, manage software, patch updates, and provide hardware maintenance. From device deployment to decommissioning, each device will undergo lifecycle management through edge computing device management services.

In the past, information technology (IT) and operational technology (OT) were two different disciplines with their own management goals. As cloud-based IoT grew, IIoT devices and connected machines become network virus intrusion points. In response to these malicious attacks, integrated management of IT and OT has been gradually developed and edge computing has become a common language between the two. Industries will rely more and more on edge computing platforms to realize the next generation of automated smart production.


Published by Mar 17, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree