91Ƶ

Simply Explained What Is CNC Turning?
Knowledge

Simply Explained What Is CNC Turning?

Computer numerical control (CNC) turning is a subtractive machining process where a cutting tool is placed against a spinning piece to take material off. This is usually done with a CNC lathe or turning center which cuts the material including wood, metal, and plastic. This article will cover the different types of CNC lathes, their components, and which type you could use for your next project.
Published: May 14, 2020
Simply Explained What Is CNC Turning?
Ancient History

Lathes (Turning) are one of the oldest types of machines and as we know, are still readily used today. Thousands of years ago, the Egyptians first used lathe technology to make stone housewares. Hundreds of years ago during the Renaissance, lathes were used to make wheels, gears, and parts for mills and pumps.

Nowadays, lathes are still used to make all these things, but also in producing crankshafts, gun barrels, musical instruments, even parts for other precision machines. While 3D printers and the other subtractive CNC machines can also do some pretty amazing things, there’s a lot that only a CNC lathe can do.

Most subtractive CNC machines such as mills, water jets, and plasma cutters have the workpiece secured to a bed and the cutting done by a spinning tool. To cut, the tool moves across the workpiece or a tool head shoots at it. In contrast, CNC turning reverses that process by rotating the workpiece and cutting away at it (by moving a static cutting bit against the workpiece).

Because of how they operate, CNC mills are primarily used for creating complicated geometries, while CNC lathes are used for creating cylindrical or oblong shapes. A CNC lathe is usually chosen over a CNC mill or 3D printer because of its ability to make multiples of the same part incredibly fast and from one stock piece of material. Check out this mesmerizing video of a CNC lathe in action:

Components of a Lathe (Turning)

While there are several different types of lathes, they all have relatively similar components. Keep in mind that lathes can spin very heavy workpieces at incredible speeds. These machines are built to handle major projects with precision and a small mistake can lead to serious injury or damage.

Let’s take a closer look at each component of a lathe machine:

  • CNC control panels are the “brains” where the CNC program is stored. Machinists control the entire lathe from the keys on this panel including starting and stopping a project, moving the axis, and entering new programs.
  • Headstocks function as a holding device for the other components of the lathe, including the gear chain, spindle, and driving pulley.
  • Tailstocks, though not always used, are a non-rotating center mount used for boring and located opposite of the headstock.
  • Spindles are the rotating axis of the machine with a shaft at its heart. Both the headstock and tailstock can have one.
  • Chucks are responsible for gripping the component that is to be machined. Chucks can have a different number of jaws for holding the workpiece.
  • Beds are the base of the machine and used for the sliding action. The bed can sometimes be extended for larger workpieces or function as a conveyor belt.
  • Cutting tools are small bits that remove material in different ways depending on the size and shape of the tool. (Regular drill bits are usually separated from this classification.)
  • Tool turrets are the tool carrier for the machine. The shape and the size of the turret are determined by the number of tools that’ll be mounted on them.
  • Carriages hold the cutting tool longitudinally to the workpiece for turning, or perpendicularly for facing.
  • Foot pedals are used to open or close the chuck or tailstock.

Though lathes are relatively simplistic in their design, they’re hard to master. Understanding the components and how they work individually is the best way to get started with a CNC lathe. Now that we know more about the different parts of the machine, let’s take a look at a few different types of lathes and when you might use each one.

Types of Lathes

There are several different types of lathes out there and each is suited for various kinds of projects. The primary difference between a CNC and a conventional lathe is that a conventional lathe is usually restricted to two axes for tooling, while a CNC lathe can have up to six machining axes and even milling tool options as well.

  • Horizontal CNC lathes are one of the most commonly used machines and have all the capabilities of a conventional lathe except they’re controlled by a computer and primarily used for turning and boring.
  • Vertical CNC lathes hold the workpiece from the bottom (instead of the side grip is horizontal) and spin it like a top. This is good for workshops with space constraints and when working on particularly stout, heavy workpieces.
  • Horizontal turning centers are enclosed CNC lathes that integrate milling and drilling capabilities. A turning center can also include a traveling tool turret, more tooling axes, coolant flooding, a tailstock that is separated from the carriage, and sometimes a conveyor belt.
  • Vertical turning centers are a combination of a horizontal turning center and a CNC mill. While there are many more types of conventional lathes out there, the above four are the primary styles of CNC lathes. Now, let’s look at all the ways they can turn.
Alternatives

Wanting to do some turning but can’t get access to a CNC lathe? Actually, turning technically doesn’t need to be done with a lathe; it can be done with a mill or, more commonly, with a drill press. All that’s required is a chuck that can properly hold the workpiece and some sort of carriage that moves the cutting tool against the component.

If you do happen to try retrofitting your drill press and turning it into a vertical lathe, it’s best to stick with woodturning. That’s because drill presses don’t have the required speed or torque to machine metal the way a lathe does. Whatever you try, always remember to be safe and wear the proper PPE when working with these machines!

Published by May 14, 2020 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91Ƶever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91Ƶever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91Ƶever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91Ƶever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree