91Ƶ

What Is Discrete Manufacturing? And Difference Between Discrete and Process Manufacturing
Knowledge

What Is Discrete Manufacturing? And Difference Between Discrete and Process Manufacturing

Discrete manufacturing is an industry term for the manufacturing of finished products that are distinct items capable of being easily counted, touched, or seen. Discrete manufacturing involves parts and systems like nuts and bolts, brackets, wires, assemblies, and individual products.
Published: Jun 19, 2020
What Is Discrete Manufacturing? And Difference Between Discrete and Process Manufacturing

Discrete manufacturing is a type of production process where the output can be counted and tracked as per unit numbers and they are measured in terms of weight or volume.

A business must have good supporting software that helps in impeccable planning and execution of the same. The biggest challenge of this manufacturing process is that its production depends on the individual needs of its customers.

Examples of products made from discrete manufacturing include automobiles, furniture, airplanes, toys, smartphones, and defense systems. In theory, a discrete product can be broken down at the end of its lifecycle so its basic components can be recycled.

What are discrete manufacturing examples?

Almost every item sold in stores is an example of discrete manufacturing. What is meant by discrete manufacturing is that the object being created is a distinct unit. You can divide non-distinct products, like oil, into any size you want. You cannot divide a teapot into two halves because it is a distinct unit.

Examples of discrete manufacturing could include:

  • vehicles
  • aircraft
  • smartphones
  • computers
  • cookware
  • clothing
  • cabling

It could also include parts such as:

These parts can be individually countable as units, or identifiable as numbers. Usually once produced, items cannot be distilled back into original components.

Discrete manufacturing can be characterized by unit production; where units can be produced with high complexity and low volume, like aircraft or computers, or low complexity and high volumes, like nuts or bolts.

Discrete vs. process manufacturing

Discrete manufacturing contrasts with process manufacturing. In process manufacturing, the product is created by using a formula or recipe to refine raw ingredients and the final product cannot be broken down to its basic components.

Examples of goods produced by process manufacturing include pharmaceuticals, food, and beverages, refined oil, and paints.

Discrete manufacturers use a bill of materials (BOM) and production follows a route, such as an assembly line, whereas process manufacturing uses a recipe and the ingredients are blended or refined in batches.

Discrete manufacturers make things that can be counted and itemized and often require assembly. Examples are the Ford Motor Company making trucks and automobiles, Rawlings making baseballs and gloves, Apple and iPhones and computers, and all the other companies making all the other widgets and gizmos. These products are ordered, manufactured or assembled, and delivered, based on “how many” the customer needs.

Discrete manufacturers, on the other hand, can have a highly complex bill of materials (BOM), which may be parts or raw materials. In addition, most manufacturing has a multi-step assembly process. If a single part or material is missing, the whole production process can grind to a halt. Assembly also necessitates ample factory floor space, multiple machines often organized in cells, and usually requires more human input and labor all throughout the process. For this reason, availability is paramount.

Continuous-flow or Process manufacturers make stuff that has to be mixed from a formula or a recipe. Pharmaceutical companies like GlaxoSmithKline, chemical companies like Dow Dupont, or oil companies like Exxon Mobil Corporation. Most food and beer manufacturers also fit in this category, even if the end product is packaged or bottled and is technically a thing. Food is just edible stuff, apparently. Customers order from process manufacturers based on “how much” of something they need.

Despite their differences, many manufacturers have elements of both types of products in their production process.

Discrete manufacturing and ERP systems

ERP systems, then called manufacturing resource planning (MRP), were originally developed to manage discrete manufacturing processes. These ERP systems let companies control and get visibility into the manufacturing process, helping to eliminate waste and reducing the time required to produce the goods.

Typical functions in these systems include inventory or materials management, sales order management, supply chain management, financial management, and CRM. ERP systems are often tailored for specific discrete manufacturing needs in various industries, such as automotive, aerospace, defense, industrial equipment, and electronics. The systems are then typically customized to meet a manufacturer's specific needs.

Published by Jun 19, 2020 Source : Source : Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree