91ÊÓƵ¹ÙÍø

An In-Depth Exploration of The Electroplating Process for Plastic ABS
Knowledge

An In-Depth Exploration of The Electroplating Process for Plastic ABS

In recent years, plastic electroplating has been widely used in decorative electroplating of plastic parts. ABS plastic is the most widely used kind of plastic electroplating.
Published: Oct 12, 2023
An In-Depth Exploration of The Electroplating Process for Plastic ABS

We often hear about metal plating, but what is plastic plating and how is it applied? Because of its structural advantages, ABS plastic not only has excellent comprehensive properties, is easy to process and shape, but the surface of the material is easy to corrode to obtain a higher coating bonding force. Therefore, it is widely used in electroplating.

Compared with normal metal parts, plastic electroplated products can not only achieve a good metal texture but also reduce the weight of the products. While effectively improving the appearance and decoration of the plastic product, it also improves its electrical, thermal, and corrosion resistance properties, thereby improving the strength and stability of its mechanical surface.

For the selection of plastic materials for electroplating, it is necessary to comprehensively consider factors such as the processing performance of the material, the difficulty of electroplating, and the dimensional accuracy.

Overview of Plastic Plating Process

Plastic electroplated products have the characteristics of both plastic and metal. It has a small specific gravity, good corrosion resistance, simple molding, metallic luster and metallic texture, and electrical conductivity, magnetic permeability, and welding characteristics. It can save complicated mechanical processing procedures, save metal materials, and is beautiful and decorative. At the same time, it also improves the mechanical strength of the plastic. Since the metal coating has high stability to external factors such as light, atmosphere, etc., after the plastic is plated with metal, it can prevent the plastic from aging and prolong the service life of the plastic product. With the rapid development of industry and the increasing application of plastic plating, it has become one of the important means of surface decoration in plastic products. At present, it has been widely used at home and abroad for electroplating on the surface of ABS, polypropylene, polycarbonate, polycarbonate, nylon, phenolic glass fiber reinforced plastic, polystyrene, and other plastics. Among them, ABS plastic is the most widely used electroplating and the electroplating effect is the best.

Principle of ABS Electroplating

Since ABS plastic is not conductive, it cannot be directly electroplated with metal/alloy on its surface. Therefore, electroless plating is required before electroplating. ABS plastic will form a thin noble metal film on the surface of the object after roughening, sensitizing, reducing, and accelerating degelling. This layer of the precious metal film can play the role of active catalysis, also called catalytic film; it can accelerate the reduction reaction of electroless plating. The practice has proved that precious metals such as silver and palladium have this catalytic ability, which makes the electroless plating process smoother.

Common problems and solutions in ABS plastic electroplating

ABS plastic is a terpolymer of acrylonitrile (A), butadiene (B), and styrene (S). For electroplating grade ABS plastics, the content of butadiene has a great influence on electroplating, and should generally be controlled at 18% to 23%. Engineering plastic has high butadiene content, good fluidity, easy to shape, and good adhesion to the coating. Since ABS is a non-conductor, a conductive layer must be attached before electroplating. The formation of the conductive layer must go through several steps such as roughening, neutralization, sensitization, activation, electroless plating, etc., which is more complicated than metal electroplating and is prone to problems in production.

Common problems and solutions

The plated parts are easy to float, and the place in contact with the hanger is easy to be scorched. Because the specific gravity of the plastic is small, it is easy to float in the solution. The shape of the lampshade is like a small plate, the inner surface is recessed, and there are two small holes on the side. At first, only a copper wire is used to clamp the two small holes for electroplating. Due to the release of gas in electroplating, the lampshade is easily separated from the copper wire, and the copper wire is also light, not enough to make the lampshade immersed in the solution. After plastic processing, a heavy object was attached to the copper wire to solve the floating problem. The contact point between the copper wire and the lampshade is scorched, and the plastic is exposed, which is caused by poor conduction. In order to solve the problem of workpiece floating and conductivity, we designed a special fixture. The clip has a certain weight and no longer floats after the lampshade is put on, and two wider conductive sheets are used to clamp the holes of the lampshade to make the current everywhere even, and the contact points will not be burnt.

Bubbles appear during chemical copper plating of the lampshade, and the bubbles become larger after electroplating, and the process flow of plastic electroplating can be lifted: degreasing → water washing → roughening → water washing → sensitization → tap water washing → deionized water washing → activation → water washing → chemical Copper plating → water washing → electroplating → water washing → drying.

It can be seen from the above that any problem in any step before electroless copper plating will cause bubbling. There are many reasons for the poor adhesion of plastic parts. The degreasing process and the coarsening process are often prone to problems. Incomplete degreasing can cause peeling and shedding. The lampshade uses chemical degreasing (plastic parts are not suitable for degreasing with organic solvents). During operation, the temperature rises to 65~70℃, and the workpiece is shaken continuously until there are no water droplets after washing.

Roughening is a very important process in ABS plastic electroplating. Insufficient coarsening will reduce the binding force; excessive coarsening will make the hole larger and deformed, and the binding force will also decrease. Because the divalent tin in the sensitizer is extremely unstable, the sensitizer is easy to fail. If it is not adjusted, the activation will fail. Insufficient activation will result in incomplete deposition of the electroless plating layer; excessive activation will cause excessive reduction of the active metal on the surface to form a discontinuous film, which will also reduce the bonding force. Plastic injection started with degreasing, strictly following the degreasing liquid formula, and operating conditions, and checking the time and temperature of the coarsening process, and newly prepared sensitizing liquid and activating liquid. As a result, bubbles still appeared after electroless copper plating. After several repeated tests, the results were the same. Finally, it was concluded that the bubbling was not caused by degreasing, coarsening, sensitization, and activation. At this time, it is suspected whether there is a problem with the composition and molding process of the material because the composition and molding process of ABS plastic has a direct relationship with electroplating. ABS particles are easy to absorb water. The moisture content before an injection is required to be less than 0.1%. It must be dried in a hot air-drying oven at 80°C for 2 to 4 hours, and the surrounding environment must be dry.

No other ingredients can be mixed into ABS plastic. Through investigation, we found that the injection molding factory piled many molded ABS plastic parts on the wet warehouse floor, and the raw materials before injection molding were not dried. Under our guidance, the raw materials to be injection molded are dried at 80°C for 2 to 4 hours, and injection molding is performed after the inspection meets the electroplating requirements. The bubbling problem after electroplating of the improved lampshade no longer occurs.

Dark spots appear on the surface of the lampshade after electroplating. After the non-gloss lampshade is electrolessly plated with copper, it is transferred to the electroplating process. The process we use is nickel plating→copper plating→bright nickel plating→chrome plating. The copper plating solution is relatively stable. The main problem is that the copper anode is prone to produce copper powder (Cu2O) during electroplating, and the copper powder entering the plating solution will cause the coating to be rough. We wrap the anode with a corrosion-resistant anode cloth and put it in the anode sleeve. After electroplating, it is often opened and cleaned. Therefore, the surface after copper plating is bright and detailed without any problems. After the parts are plated with bright nickel, the surface is dull, and there are dark spots. After adding a brightener, the problem has not been eliminated. Analysis of the bath solution shows that the content of each component is within the range. After the bath was left overnight, all the supernatant was poured into the spare bath, and it was found that there was yellow-brown muddy sediment at the bottom of the plating bath.

After analysis, the reason is that the temperature of the nickel-plating solution is too high and the brightener is decomposed. During electroplating, the air stirring device turns up the sludge at the bottom of the tank and deposits it on the plating layer together with nickel ions, causing burrs and black spots. Later, it was also discovered that because nickel plating and chromium plating use a set of conductive rods, the conductive rods have chromium anhydride left during chromium plating. When nickel plating, chromium is easily brought into the nickel tank; and because the hanger is not insulated, the plating Copper impurities are brought into the nickel solution, which are the causes of blackening. Copper impurities can be removed by electrolysis at a current density of 0.5A/dm2. To remove hexavalent chromium, first, adjust the pH of the bath to about 3 with sulfuric acid, then add 0.2~0.4g/L of sodium sulfite, stir to reduce the hexavalent chromium to trivalent chromium, and then use low current density to remove the trivalent chromium. Finally, use activated carbon to filter and remove organic impurities. After the bath solution was processed, no black spots appeared after nickel plating. When chrome is used, the concave part of the lampshade adopts a pictograph anode, and the lampshade plated finally is bright and detailed, which meets the requirements of the product.

To sum up:

  1. The composition and molding process of plastic parts cannot be ignored, which is often a problem that is not easy to notice for electroplating workers.
  2. Special hangers should be designed during electroplating.
  3. Pay attention to the maintenance of the tank liquid to keep the components within the process specifications.
  4. Strengthen the cleaning between processes, and don't bring other impurities in.
Published by Oct 12, 2023 Source: , Source:

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree