Engineering plastics refer to a class of plastics that can be used as engineering structural parts because of their low density, high specific strength, excellent wear resistance and low coefficient of friction, high heat resistance, electrical insulation, chemical stability, acid/alkali resistance, and with obvious advantages such as free coloring, easy modification, and good processability, it has been widely used in the fields of automobiles, electronics, electrical, communications, transportation, aerospace, machinery, etc., and has become one of the important symbols to measure a country's industrial development level. Modification of engineering plastics due to the limitation of the performance of a single resin, and people's requirements for low cost, high performance and diversified performance of materials are getting higher and higher, and various modified engineering plastics have emerged as the times require. Engineering plastics can be realized through physical, chemical or a combination of physical and chemical methods, including blending (alloying), copolymerization (grafting), and filling reinforcement. Modification can significantly improve the performance of engineering plastics. In addition, one polymer matrix can be used to produce a variety of products with different uses. The production operation is flexible, and it is easy to realize one machine with multiple functions, and realize the serialization and specialization of products.