91ÊÓƵ¹ÙÍø

What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care
Trend

What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care

Refers to the use of imaging, medical image processing technology, and other possible physiological and biochemical means, combined with computer analysis and calculation, to assist radiologists in finding lesions and improve the accuracy of diagnosis.
Published: Nov 11, 2022
What is the Computer-Aided Diagnosis? Promote the Development of Smart Medical Care

What is AI Healthcare? The Combined Application of Digital Technology and Public Healthcare

Smart medical care is mainly based on current medical care and introduces deep image recognition and AI. The purpose of technologies such as learning or neural network is to provide predictable and tailor-made medical services, thereby reducing the repetitive work of doctors and improving the efficiency, accuracy, and convenience of medical services. AI is introduced into the medical industry. The medical 4.0 era of new value has been derived. Artificial intelligence assists medical treatment, but it needs to be certified by the US FDA before it can be successfully introduced in various countries. The medical images provided for machine learning must be clear and of a certain quality to have accurate AI effects. The technical team may be able to strengthen the technology by providing clear images for these organ parts that work 24 hours a day, and then let AI perform deep learning (DL).

Aging, low birthrate, and lack of nursing manpower will impact the entire medical and nursing industry. Combining medical and ICT technology will save repetitive mechanical work, allowing practitioners in the big health industry to truly spend their time with caregiver interaction.

Smart healthcare refers to the application of artificial intelligence technology (AI) in the medical field. The World Health Organization (WHO) defines eHealth as "the use of information and communication technologies (ICT) to support health and health-related fields". The World Health Organization has shifted its focus from information communications to broader digital technologies, formally recognizing the important role of digital technologies in improving public health. And urging member states to prioritize the development of digital health technologies as a means of promoting Universal Health Coverage (UHC) and promoting Means of Sustainable Development Goals (SDGs). It also further defines Digital Health as "covering eHealth, mHealth, and other emerging technologies applied in the field of health care, such as the use of advanced computer science, such as big data, artificial intelligence, etc.". Under the development context of the relevant concepts and strategies of the World Health Organization, smart health care is a part of the development of digital health, and the development of smart medical care is an important part of smart health care.

Advantages of Smart Medical Applications:

  • Assist in medical decision-making: Develop the hospital's digital decision-making control center, organize data analysis, and help speed up the hospital's efficiency in dealing with emergencies.
  • Improve doctor-patient relationship: Introduce digital technology and artificial intelligence (AI) to help improve processes and enhance patient experience and the doctor-patient relationship.
  • Simplify administrative processes: Through technologies such as Process Robotics (PRA) and artificial intelligence, caregivers can focus on care work instead of spending time on administrative work.
  • Optimize service process: Analyze the bottleneck of hospital service, and improve service quality through design optimization of the hospital service process.
  • Improve operational efficiency: Introduce technologies such as digital supply chain, automation, and robotics to improve operational management and back-office efficiency.

What is the Computer-Aided Diagnosis?

Computer-aided detection (CADe), also known as computer-aided diagnosis (CADx), is a system that helps doctors interpret medical images. Imaging techniques in X-rays, MRIs, endoscopy, and diagnostic ultrasound generate vast amounts of information that must be thoroughly analyzed and evaluated by a radiologist or other medical professional in a short period. CAD systems process digital images or videos of typical appearances and highlight salient features, such as possible diseases, to provide input to support decisions made by professionals. CAD has potential future applications in digital pathology with the advent of whole-section imaging and machine-learning algorithms. So far, its application has been limited to quantifying immunostaining, but standard H&E staining is also being investigated.

CAD technology mainly refers to computer-aided technology based on medical imaging. The CAD technology that is often said now mainly refers to computer-aided technology based on medical imaging. This is to be distinguished from computer-aided detection, which focuses on the detection. The computer marks abnormal signs and provides common image processing techniques without a diagnosis. Computer-aided diagnosis is the extension and ultimate purpose of computer-aided diagnosis, and computer-aided diagnosis is the basis and necessary stage of computer-aided diagnosis. The adoption of the CAD system helps to improve the sensitivity and specificity of the doctor's diagnosis.

CAD is an interdisciplinary technology that combines elements of artificial intelligence and computer vision with image processing in radiology and pathology. A typical application is the detection of tumors. For example, some hospitals use CAD to support mammograms (breast cancer diagnosis), colonoscopies for polyps, and preventive checkups for lung cancer.

Computer-aided inspection (CADe) systems are often limited to marking prominent structures and parts. Computer-aided diagnosis (CADx) systems assess salient structures. Computer-Aided Simple Classification (CAST) is another type of CAD that performs fully automated initial interpretation and categorizes studies into meaningful categories such as negative and positive. CAST is particularly useful for emergency diagnostic imaging, where the rapid diagnosis of life-threatening critical situations is required.

Computed Tomography (CT):
After the CT image is produced, the medical staff will transmit the image to the computer-aided workstation. Once the workstation has data, it will automatically run the program. Preliminary detection results will be generated in about 1 to 3 minutes. This result is displayed with a picture with additional indicators, indicating what kind of condition is in that area. By clicking on the picture, the doctor can zoom in on the features of each affected part to further diagnose whether it is abnormal. Although AI technology can quickly mark subtle and large amounts of information, sometimes the parameter settings of the AI system are too sensitive. For example, it may just be a normal block of blood vessels, but the system does not behave as abnormal. At this time, an experienced physician is still required to screen and exclude.

Disease probability prediction:
In the system with a very user-friendly interface, physicians can obtain the probability of each disease by clicking on the department and entering items such as age, symptoms, data, and imaging parameters.

Biomarker report:
Physicians can click on different biomarkers in the system to get different analysis reports. For example, before or after the developer is injected, different data and graphs with comparative symptoms can be obtained. In addition, the system can also add database data again, distinguish the left and right sides of the graph or display it symmetrically. Whether there is a disease in the gray matter, white matter, and basal ganglia of the brain will also clearly show the probability for the doctor's diagnosis reference.

CAD Technical Methods and Steps:

CAD is based on highly sophisticated pattern recognition. Scan X-rays or other types of images for suspicious structures. Usually, several thousand images are needed to optimize the algorithm. The digital image data is copied to a CAD server in DICOM format and prepared and analyzed in several steps.

  1. Preprocessing:
    • Reduce artifacts (errors in images).
    • Image noise reduction.
    • Flattening (harmonization) of image quality (increasing contrast), is used to clear different basic conditions of the image.
    • Filter.
  2. Divide into:
    • Discrimination of different structures in the image, e.g., heart, lungs, thorax, blood vessels, possible round lesions.
    • Matched with the anatomical database.
    • Sample grayscale values in the volume of interest.
  3. Structure/ROI (Region of Interest) Analysis Each detected region is individually analyzed for special features:
    • Compact.
    • Form, size, and location.
    • A reference to close-by structure/ROI.
    • Analysis of the mean gray value within the ROI.
    • The ratio of gray level to structure boundaries within the ROI.
  4. Evaluation/Classification After analyzing the structure, each ROI was evaluated (scored) individually to obtain the probability of TP.
    • Nearest neighbor rule.
    • Minimum distance classifier.
    • Cascading Classifiers.
    • Naive Bayes classifier.
    • Artificial neural networks.
    • Radial Basis Function Network (RBF).
    • Support Vector Machines (SVM).
    • Principal Component Analysis (PCA).

Matters Needing Attention in CAD Technology:

  • Sensitivity and specificity:
    CAD systems attempt to highlight suspicious structures. Today's CAD systems cannot detect pathological changes 100% of the time. Depending on the system and application, the hit rate can be as high as 90%. Correct hits are called true positives (TP), while false positives (FP) are mislabeled in healthy parts. The fewer FPs indicated, the higher the specificity. Low specificity reduces the acceptance of the CAD system because the user must identify all of these false hits. The FP rate in lung overview exams can be reduced to 2 per exam. In other sections, the FP rate maybe 25 or higher. The FP rate in the caste system must be extremely low (less than 1 per examination) for meaningful study classification.
  • Absolute detection rate:
    The radiologist's absolute detection rate is a surrogate for sensitivity and specificity. Overall, clinical trial results regarding sensitivity, specificity, and absolute detection rates can vary significantly. Each study outcome depends on its underlying conditions and must be assessed against those conditions.
    • Retrospective or prospective design.
    • Use the quality of the image.
    • Conditions for X-ray examination.
    • The experience and education of radiologists.
    • Disease type.
    • Consider the size of the lesion.
Published by Nov 11, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree