91Ƶ

What is Precision Machining?
Knowledge

What is Precision Machining?

Precision machining is the process of removing material from a workpiece to chang the dimensions or properties of the workpiece so that is can become a more precise product that will meet very exact specifications.
Published: Jun 14, 2022
What is Precision Machining?

What is Precision Machining?

Precision machining is the process of removing material from a workpiece until it meets precise tolerances. There are many types of precision machine tools, including milling, turning, and electrical discharge machining (EDM) tools. Precision machining tools can be controlled by computers, and these machines are called Computer Numerical Control (CNC) machining tools.

Almost all metals, and many other materials, such as plastic and wood, can be precision machined using precision machining tools. These machines are operated by professional and well-trained mechanics. In order for the cutting tool to do its job, it must move in the specified direction in order to make the correct cut. The rate at which material is removed from the workpiece is called the "cutting speed." The workpiece can also be moved during machining, and this secondary movement is called "feeding." These actions, along with the sharpness of the cutting tool, determine the efficiency and accuracy of the precision machine.

High-quality precision machining requires the ability to follow specific blueprints produced by CAD (Computer Aided Design) or CAM (Computer Aided Manufacturing) programs such as AutoCAD and TurboCAD. The software can help create complex 3D diagrams or outlines needed to manufacture tools, machines or objects. These blueprints must be strictly followed to ensure product integrity. Although most precision machining companies use some form of CAD/CAM program, they still often use hand-drawn sketches in the initial stages of design.

Precision machining is used on a variety of materials, including steel, bronze, graphite, glass and plastic, to name a few. Depending on the sizes of the project and the materials used, a variety of precision machining tools will be used. Any combination of lathes, milling machines, drilling machines, saws and grinders, and high-speed robots can be used. The aerospace industry may use high-speed machining, while woodworking tool manufacturing may use photochemical etching and milling processes. Production runs or a specific number of any particular item can be in the thousands, or just a few. CNC equipment allows precise dimensions to be followed throughout the product run.

What is CNC?

CNCs automate machine tools by executing pre-programmed sequences of machine control commands through a computer. This is in contrast to machines that are manually controlled by handwheels or levers, or mechanically controlled by cams alone.

In modern CNC systems, the design of mechanical parts and their manufacturing procedures is highly automated. The mechanical dimensions of the part are defined using CAD software and then translated into manufacturing instructions by CAM software. The generated instructions are converted by ("post-processor" software) into the specific commands needed for a specific machine to produce that component and then loaded into the CNC machine.

Since any given component may require the use of many different tools - drills, saws, etc. - modern machines often combine multiple tools into a single "unit.” In other installations, many different machines are used with external controllers and robots to move components from machine to machine. In either case, the series of steps required to produce any part is highly automated and produces a part that closely matches the original CAD.

As controller hardware has evolved, so have the factories as well. As a safety measure, one change made is to enclose the entire mechanism in a large enclosure, often with additional safety locks to keep operators away from the workpiece during operation. Most new CNC systems manufactured today are 100% electronically controlled.

CNC-like systems are now used for almost any process that requires a series of movements and operations. These include laser cutting, welding, friction stir welding, ultrasonic welding, flame and plasma cutting, bending, rotating, punching, pinning, gluing, fabric cutting, sewing, tape and fiber placement, routing, pick and place, and sawing.

What is CNC Machining?

CNC machining is a manufacturing process in which pre-programmed computer software instructs the movement of factory tools and machines. This process can be used to control a range of complex machinery, from grinders and lathes to milling machines and routers. With CNC machining, 3D cutting tasks can be accomplished in one set of cues.

When a CNC system is activated, the required cuts are programmed into the software and assigned to the corresponding tools and machines that perform the prescribed dimensional tasks, just like a robot.

In CNC programming, code generators in digital systems often assume that the mechanism is flawless. But the possibility of error does exist, and errors can be multiplied whenever the machine is instructed to cut in multiple directions at the same time.

Programs for CNC machine tools are entered into a computer via a keypad. CNC programming is stored in the computer's memory. The code itself is written and edited by programmers. The CNC system is by no means static, as new cues can be added to the original program through modified code.

What is Milling Machining?

Milling is a machining process that uses a rotary cutter to remove material from a workpiece by advancing (or feeding) the cutter into the workpiece in a specific direction. The tool can also be held at an angle relative to the axis of the tool. Milling covers a variety of different operations and machines, and can be used for machining small parts as well as for large, heavy-duty combination milling jobs. Milling is one of the most common processes used for machining custom parts to precise tolerances.

Milling can be done with a wide variety of machine tools. After the advent of CNC, milling machines developed into machining centers: milling machines enhanced by automatic tool changers, tool magazines or conveyor belts, CNC functions, cooling systems and housings. Milling centers are generally classified as vertical machining centers (VMC) or horizontal machining centers (HMC).

The integration of milling and turning processes, and vice versa, was initially done combining machine turning with milling cutters. This has led to a new class of machine tools; multitasking machines (MTMs), which are specialized for milling and turning within the same working envelope.

What is Turning Machine?

Turning involves the rotation of a workpiece (usually metal, but may also be wood, plastic or stone) near a cutting tool. Turning is usually performed on a lathe.

There are different types of turning operations including: linear turning, threading, tapered turning and external grooving. In linear turning, a single cutting tool moves in parallel across the workpiece as the workpiece rotates. In tapered turning, a tapered turning attachment is used. For external grooving turning operations, grooves are cut into the workpiece to a specific depth. Because they are in the split turning method, the grooves are not completely removed.

A lathe is used to shape material by rotating a workpiece into a cutting tool. There are three types of lathes: engine lathes which have an automated slide and power feed, turret lathes which have a turret for holding various different cutting tools, and special purpose lathes designed to perform special machining operations. Lathes can range in size from small and portable to large floor-standing machines.

What is Electric Discharge Machining?

Electric Discharge Machining (EDM) is a manufacturing process that utilizes electrical discharge to obtain a desired shape. Material is removed from the workpiece by a series of rapid and repeated electrical discharges between two electrodes, separated by a dielectric fluid and subjected to an electrical voltage. One of the electrodes is called the tool electrode, or simply "tool" or "electrode", while the other is called the workpiece electrode or "workpiece".

Wire EDM and Die Sink EDM

There are two kinds of EDM, Wire EDM and Die Sink EDM. In Wire EDM (wire erosion) a graphite wire electrode is fed into the cutting area and the graphite electrode is eroded as it machines the workpiece. The work area is submerged in deionized water which functions as an insulator and constantly flushes the conductive material.

Die Sink EDM, uses an electrode and a workpiece immersed in oil or other dielectric fluid. The electrode and workpiece are connected to a suitable power source, creating an electrical potential between the two parts. As the electrode approaches the workpiece, dielectric breakdown occurs and small spark jumps occur in the fluid that forms the plasma channel. Vaporized material is then flashed out away from the cutting area.

All of the above are processes that remove excess, raw material from a work-piece, while maintaining close tolerances, to create a finished product. Simply put, it means shaping large pieces of material into more precise items, so that they can meet very exact specifications.

Published by Jun 14, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree