91ÊÓƵ¹ÙÍø

What is Knurling?
Knowledge

What is Knurling?

Knurling is a mechanical process of rolling patterns on the knobs of metal products or other working surfaces, mainly for anti-skid purposes. And used in many hardware, mold, and mechanical components.
Published: Jun 24, 2022
What is Knurling?

What is the Knurling Process?

The operation of rolling a workpiece to produce a specific pattern on its surface. The method of using a knurling knife to roll the surface of the workpiece out of straight or reticulated patterns is called knurling. After the workpiece is knurled, it can increase the beauty and is easy to handle. It is often used for the outer surface processing of parts such as micrometer casings and winch wrenches. Knurling is a machining process that forms a fine mesh and is generally a surface treatment process used to increase surface friction. Knurling will be done on the grip of the tool to facilitate the grip of the tool.

The knurling knife is composed of a roller and a knife body. The pattern can be divided into straight and reticulated patterns, and the patterns are divided into thicknesses and are represented by the modulus m. Knurling knives can be made into single-wheel, double-wheel, and six-wheels. The thickness of the pattern is determined by the size of the pitch. In the turning process, the knurling process of the parts is often encountered. The knurling process seems to be simple, but the pattern is often disordered due to improper operation.

  1. Single-wheel knurling knife: It consists of a straight-grained roller and a handle. A flower wheel is installed on a knurled handle, which is usually used to roll straight-grained.
  2. Double-wheel knurling knife: It is composed of two rollers with different rotation directions, a floating joint, and a handle. Two knurled wheels are installed on one knurled handle, generally composed of two opposite twill wheels. It is usually used for rolling mesh.
  3. Six-wheel knurling knife: It is composed of three pairs of rollers, and there are three sets of double-type wheels mounted on the handle, which can directly convert different pattern combinations. And the three pairs of rollers are supported by the floating connection head, which can roll out three kinds of reticulated patterns of different thicknesses.

What is the Knurling Method?

Since the knurling process uses rollers to roll the metal layer on the machined surface to produce a certain plastic deformation to form a pattern, the radial pressure generated during knurling is very large. Before knurling, the knurled surface of the workpiece should be reduced by 0.8~1.6m according to the nature of the workpiece material and the size of the knurling pitch P. The knurling knife is clamped on the tool holder of the lathe, and the center of the knurling knife is equal to the center of rotation of the workpiece. When rolling non-ferrous metals or workpieces with high knurling surface requirements, the roller surface of the knurling tool is installed at an angle of 3°~5° to the left relative to the workpiece surface, so that it is easy to cut and not easy to produce random lines.

Notes on the Knurling Process:

  1. When starting knurling, it is necessary to use a large pressure to feed the knife, so that the workpiece can be carved with a deeper pattern, otherwise it is easy to produce random patterns.
  2. To reduce the knurling pressure at the beginning of rolling, 1/2~1/3 of the width of the roller surface can be in contact with the workpiece. In this way, the knurling tool can be easily pressed into the surface of the workpiece. After the knurling meets the requirements of the workpiece when the car is stopped, the tool can be moved longitudinally. Repeat rolling 1 to 3 times until the pattern protrudes.
  3. When knurling, the cutting speed should be reduced, generally 5~10m/min. Select a larger longitudinal feed, generally 0.3~0.6mm/r.
  4. When knurling, it is necessary to pour cutting oil to lubricate the roller, and often cut out the cutting produced by the rolling wheel.

91ÊÓƵ¹ÙÍø to Process High-Precision Knurling?

91ÊÓƵ¹ÙÍø to process high-precision knurling, on the other hand, requires the use of high-quality knurling wheels. Take the ACCU straight grain 0.5 knurling wheel as an example. It has the characteristics of suitable hardness and clear pitch distribution, and the processing can ensure uniform output. Finally, it is necessary to use a precision knurling tool to enhance the stability of processing. Applicable machine types include automatic lathes and ordinary lathes.

Features:
  • It is easy to adjust and set, and set the screw in the center of the knife to pre-store the diameter range of the workpiece.
  • There is a scale for adjusting the diameter of the workpiece on the handle.
  • Special surface product hardening treatment can prolong the service life of the tool holder.
  • Hardened bushing can increase speed, efficiency, and life.

The knurling process is equipped with two straight-grained cutting wheels, which are aligned with the center of the workpiece, and the blade is inclined at about 3 degrees, which is convenient for cutting into the workpiece. The advantage of cutting knurling is to make the machined texture deeper. In the general extrusion process, the knurling finish and depth need to be increased in feed to achieve, which is easy to damage the machine tool.

Published by Jun 24, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree