91ÊÓƵ¹ÙÍø

What is a Power Converter?
Knowledge

What is a Power Converter?

The AC voltage is stepped down to the proper AC voltage through a transformer.
Published: Sep 28, 2022
What is a Power Converter?

What is a Voltage Stabilizer?

A voltage stabilizer or voltage regulator refers to a device that automatically maintains a constant voltage in electronic engineering. A regulator may be a simple feedforward design or may contain a negative feedback control loop. Regulators may also use electromechanical mechanisms or electronic modules. According to different designs, voltage regulators can be divided into DC voltage regulators and AC voltage regulators.

A voltage regulator can provide a constant voltage when the power supply changes or the load current changes. Voltage stabilizers are often used in power supply systems, working in conjunction with rectifiers, electronic filters, etc., to provide stable output voltages, such as the working voltage required by microprocessors and other components. In alternators and even large generators in power plants, voltage regulators control the stability of the output voltage. In a distributed power distribution system, the voltage stabilizer may be installed in a substation or along the direction of the conductor to ensure that users can get a stable voltage regardless of the power level.

What is a Power Converter?

A converter is a device that transforms AC voltage, current, and impedance. When an AC flows through the primary coil, an AC magnetic flux is generated in the iron core or magnetic core, which induces a current in the secondary coil. The transformer consists of an iron core or a magnetic core and a coil. The coil has two or more windings. The winding connected to the power supply is called the primary coil, and the rest of the windings are called secondary coils. In the generator, whether the coil moves through the magnetic field or the magnetic field moves through the fixed coil, an electric potential can be induced in the coil. In both cases, the value of the magnetic flux is unchanged, but the amount of magnetic flux that intersects the coil is different. Change is the principle of mutual induction. A transformer is a device that uses the electromagnetic mutual inductance effect to transform voltage, current, and impedance.

The transformer method first requires the AC voltage to be stepped down to the proper AC voltage through a transformer. This is an AC/AC conversion, and the step-down value is set by the winding ratio of the transformer. Then, the AC voltage stepped down by the transformer is full-wave rectified by a diode bridge rectifier and converted into a pulse voltage. Finally, the capacitor smoothers and outputs a DC voltage with a small ripple, which is the traditional AC/DC conversion method. The main components of the transformer are the primary coil, the secondary coil, and the iron core (magnetic core). The main functions are voltage transformation, current transformation, impedance transformation, isolation, and voltage regulation.

The Working Principle of the Converter:

The transformer consists of an iron core (or magnetic core) and a coil. The coil has two or more windings. The winding connected to the power supply is called the primary coil, and the rest of the windings are called secondary coils. It can transform AC voltage, current, and impedance. The simplest core transformer consists of a core made of soft magnetic material and two coils with different turns on the core.

The function of the iron core is to strengthen the magnetic coupling between the two coils. To reduce the eddy current and hysteresis loss in the iron, the iron core is made of laminated silicon steel sheets. There is no electrical connection between the two coils, and the coils are wound by insulated copper wires. to make. One coil connected to the AC power supply is called the primary coil, and the other coil connected to the electrical appliance is called the secondary coil. The actual transformer is very complicated, and there is inevitably copper loss (coil resistance heating), iron loss (iron core heating), and magnetic leakage (magnetic induction line closed by air).

What is AC?

Alternating Current (AC) is a current whose magnitude and polarity (direction) vary periodically with time. The number of times the current polarity changes in 1 second is called the frequency and is expressed in Hz.

What is DC?

Direct Current (DC) is a current whose polarity (direction) of flow does not change with time. A current that flows neither in polarity (direction) nor in magnitude with time is generally referred to as DC. Although the current whose polarity does not change with time and whose magnitude changes, is also DC, it is generally called Ripple current.

What is a DC/DC Converter?

A DC/DC converter is a machine that converts DC into DC and is a device that converts voltage using DC. Since electronic devices such as ICs have different operating voltage ranges, it is necessary to produce corresponding voltages one by one. A voltage lower than the original voltage is called a buck converter, and a voltage higher than the original voltage is called a boost converter.

Why do you need a DC/DC converter?

Electrical products that are plugged into an outlet to operate require an AC/DC converter to convert AC to DC, and most semiconductor components operate with DC. Each of the ICs mounted on a set of substrates has a fixed operating voltage range, and the requirements for voltage accuracy are also different. If a power supply with unstable voltage is supplied arbitrarily, it will cause problems such as malfunction or deterioration of characteristics. Therefore, to convert the required voltage or to stabilize it, a DC/DC converter is required.

A DC/DC converter is a voltage converter that effectively outputs a fixed voltage after converting the input voltage. DC/DC converters are classified into step-up DC/DC converters, step-down DC/DC converters, and buck-boost DC/DC converters. Three types of controls can be used according to requirements.

What are the Modulation Methods?

  • PFM (Pulse Frequency Modulation):
    The switching pulse width is fixed, and the output voltage can be stabilized by changing the frequency of the pulse output. The PFM control type has the advantage of low power consumption even if it is used for a long time, especially when the load is small.
  • PWM (Pulse Width Modulation):
    The frequency of the switching pulse is fixed, and the output voltage can be stabilized by changing the pulse output width. The PWM control type is highly efficient and has good output voltage ripple and noise.
  • PWM/PFM conversion type:
    In general, the performance differences of DC-DC converters using two different modulation methods, PFM and PWM, are as follows. The PWM/PFM conversion type implements PFM control at light loads and automatically switches to PWM control at heavy loads. PWM frequency, PFM duty cycle selection method.
Published by Sep 28, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree