91ÊÓƵ¹ÙÍø

Introduction to Types and Principles of Basic Welding
Knowledge

Introduction to Types and Principles of Basic Welding

Welding is a process that uses "heat" and "electricity" to connect two pieces of metal, and the type of welding metal will also affect the welding results and technical requirements; like many professional skills, welding technology also has different levels of difficulty. First understand the most common types of welding introduction, principle teaching, and skill analysis.
Published: Jul 09, 2020
Introduction to Types and Principles of Basic Welding

Basic welding technology introduction

  1. Shielding Gases

    In most cases, welding is most commonly used in "steel", but aluminum, copper and other metals can also be connected using welding technology, and different types of welding require different shielding gases used by welders, mainly used The reason for helium and argon is that the above are all inert gases, which can withstand extremely high temperatures without dissociation, and are used to protect and isolate the air during welding.

    The use of inert gas welding can avoid oxidation of the welded material and help and ensure that the welded metal has no other contaminants during the welding process, which makes the welding result stronger, safer, and has a cleaner appearance.

  2. Proper Nouns Related to Welding Technology

    When welding, the seam to be connected is formed, called "weld seam". Both sides of the welding seam will be affected by welding heat during welding, and the structure and performance will change. This area is called the "heat-affected zone".

    Due to the differences in workpiece materials, welding materials and welding currents during welding, overheating, embrittlement, hardening or softening may occur in the weld and heat-affected zone after welding, which also reduces the performance of the weldment and affects the weldability; therefore, welding It is necessary to understand and adjust the welding conditions before welding, including preheating the interface of the weldment before welding, heat preservation during welding and post-weld heat treatment, which may improve the welding quality of the weldment. Therefore, to make good welding and techniques, in addition to patient practice, you also need to be familiar with various welding knowledge and principles.

  3. Types of Welding

    There are more than 50 kinds of metal welding methods and types known at present, and most of the welding methods are generally divided into three categories: fusion welding, pressure welding, and brazing.

    • Fusion Welding

      Fusion welding, also known as "melt welding"; as the name implies, is a way to directly heat the workpiece interface to "melted" during the welding process without any pressure; At this time, the heat source heats and melts the interface between the two workpieces to be welded to form a "melt pool", and the molten pool will move forward with the heat source, and finally cool to form a continuous weld to connect the two workpieces into one.

      Features:
      In the process of fusion welding, if the air is in direct contact with the high-temperature molten pool, the oxygen in the air will oxidize the metal and synthesize with the alloy elements of the object; if nitrogen, water vapor, etc. in the atmosphere enter the molten pool, it will be In the subsequent cooling process, defects such as pores, slag inclusions, and cracks were formed in the weld, which affected the quality of the weld.
      Therefore, to improve welding quality, gas is usually used to protect arc welding, and argon, carbon dioxide, and other gases are used to isolate other elements in the atmosphere to protect the arc and molten pool rate during welding;
      Another example is when the steel is welded, adding "iron titanium powder" with a large affinity for oxygen in the coating of the electrode to deoxidize, can protect the beneficial elements manganese and silicon in the electrode from oxidation and enter the molten pool, after cooling can obtain high-quality weld results.

    • Pressure Welding

      Pressure welding, as the name suggests, is to use pressure to make the two workpieces in the original solid-state to realize the bonding between their atoms, so it is also called "solid welding"; pressure welding is often used for resistance In the pressure welding process of butt welding, when the current passes through the connection end of the two workpieces, the temperature rises due to the large resistance there. When heated to the "plastic state", the connection becomes integrated under the action of the axial pressure.

      The common feature of different pressure welding methods is to apply pressure during the welding process without adding other filler materials. The pressure welding methods such as "diffusion welding, high-frequency welding, cold pressure welding, etc." are not melting processes. Once the welding is completed, there is no problem with beneficial alloy elements burning as well as harmful elements intruding into the weld seam, which simplifies the entire welding process and improves the safety and sanitary conditions of welding.

      Because the heating temperature is lower than fusion welding and the heating time is short, the area affected by heat is also small. Therefore, many materials that are more difficult to weld by fusion welding can often be welded to the same strength as the base material by pressure welding with high-quality connectors.

    • Brazing

      Brazing, which is also divided into Brazing and Soldering, is a very widely used welding method. It mainly uses metal materials with a melting point lower than the workpiece itself as the "bonding material", and heats the workpiece and the brazing material to "higher than the brazing material". "The melting point of the material, but the temperature lower than the melting point of the workpiece". Welding the workpiece by using the liquid material to fill the gap between the two interfaces and realize the mutual diffusion between the atoms and the workpiece.

The prospect of welding automation technology

The development of electronic technology, computer microelectronic housing, and automation technology has promoted the development of welding automation technology. Especially the introduction of unit technology such as numerical control technology, flexible manufacturing technology, and information processing technology has promoted the revolutionary development of welding automation technology.

  • The intelligentization of the welding process control system is one of the core issues of welding automation and an important direction for future research. Research on the best control methods should be carried out, including linear and various nonlinear controls. The most representative is the fuzzy control of the welding process, neural network control, and the research of the expert system.
  • Welding flexibility technology is also the focus of research. In future research, various optical, mechanical, electrical technologies and welding technology will be organically combined to achieve precise and flexible welding. Using microelectronics technology to transform traditional welding equipment is a fundamental way to improve the level of welding automation. It is a current research direction to combine CNC technology with various types of welding mechanical equipment to improve its flexibility; also, the combination of welding robots and expert systems realizes functions such as automatic path planning, automatic correction of trajectories, and automatic control of penetration. Is the focus of research.
  • The integration of the welding control system is the integration of people and technology and the integration of welding technology and information technology. The information flow and material flow in the integrated system are its important components. Promoting their organic combination can greatly reduce the information volume and the requirements of real-time control. Pay attention to the ability to respond and judge human beings in control and computer processing, establish a friendly interface for human-machine, and harmonize humans and automatic systems, which are factors that cannot be underestimated in integrated systems.
  • Improving the reliability, quality stability, and control of welding power supply, and excellent dynamic performance are also the subjects of research. Develop high-performance welding machines that can adjust arc motion, wire feed, and welding torch attitude, can detect the beginning of weld slope, temperature field, molten pool state, penetration status, provide welding specification parameters in time, and actively develop the welding process computer simulation technology. The evolution of welding technology from "skill" to "scientific" roller is an important aspect of welding automation. The first ten years of this century will be a favorable period for the rapid development of the welding industry.

Remarks: Whenever and wherever welding is done, appropriate safety equipment, including welding helmets, welding gloves, welding apron, and appropriate clothes, should be completely worn.

Published by Jul 09, 2020 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree