91ÊÓƵ¹ÙÍø

Semiconductor Industry Drives Technological Innovation
Knowledge

Semiconductor Industry Drives Technological Innovation

Integrated circuits are a combination of wide-ranging electronic circuits integrated into a semiconductor chip. They are designed to perform the advanced computational functions which are used in key processor programs. Let's learn more about these fascinating integrated circuits.
Published: Mar 28, 2022
Semiconductor Industry Drives Technological Innovation

While global semiconductor sales were $412 billion in 2019, down slightly from 2018's all-time high, the overall industry remained strong, with U.S. companies accounting for nearly 50 percent of the market. The artificial intelligence (AI) related semiconductor market had revenue of $6 billion in 2019, and will exceed $30 billion in revenue by 2022, with an expected annual growth rate (CAGR) of nearly 50%.

Semiconductors: The Heart of the Electronics Industry

"Semiconductor" refers to the key components of millions of electronic devices used in education, research, communications, healthcare, transportation, energy, and other industries. Today's personal computers, smartphones, automobiles, data center servers, and game consoles rely on semiconductors for their core computing and advanced functions.

When we operate a mouse, swipe a card, type on a keyboard, or speak into an electronic device, we expect immediate and accurate responses to our commands. The laptop's semiconductor-based central processing unit (CPU) and graphics processing unit (GPU) enable computing functions that instantly turn questions into answers.

What is a semiconductor?

Integrated circuits (ICs) are made from semiconductor materials, such as silicon, and are fundamental components of modern electronic devices throughout the commercial and consumer industries. These circuits must be able to act as electrically controlled on/off switches (transistors) to perform basic logic operations in a computer. To achieve this near-instantaneous switching capability, the circuit is constructed of semiconductor material, a material that has an electrical resistance between that of a conductor and an insulator. The manufacturing process of semiconductor devices requires the execution of multiple steps in specialized facilities called wafer foundries or wafer fabs. It takes years of industry experience and research to develop, design, manufacture, release, and service a single semiconductor product family.

Semiconductor companies must simultaneously produce multiple product families at different stages of the life cycle. Today's semiconductor manufacturing process is becoming more and more mature, and a standardized production process has been derived, from wafer (substrate + epitaxial) → design → manufacturing → packaging.

Semiconductor production is an extremely complex process with long lead times. Semiconductor production time can be affected by the level of complexity, but it takes an average of three to five years from initial research to finished product. Once a product is released, some customer contracts may require the supplier to continue supplying the product for a while.

What are semiconductor materials?

Semiconductors are some materials whose conductivity is between conductors and insulators. Among them, "silicon" is the mainstream semiconductor material, accounting for about 90% of the global semiconductor market. Secondary types of semiconductors such as gallium arsenide (GaAs) and indium phosphide (InP), mostly used in communication and sensing related products, have relatively small output values and application ranges. In terms of semiconductor materials, due to the difficulty in obtaining raw materials and processing difficulties, an oligopolistic market is formed.

What is an Integrated Circuit (IC)?

Integrated circuits consist of many tiny active and passive components. Active components include transistors and diodes, while passive components include capacitors and resistors. The surface of the chip is covered with a plastic shell to protect the numerous integrated circuits inside, and by combining multiple chips, electronic products can be manufactured.

In the past, circuits made to connect components such as resistors, capacitors, inductors, transistors, diodes, etc. were composed of copper wires. Due to their bulkiness, it was difficult to manufacture small electrical products. The development of integrated circuits has changed the face of electronics technology, and now circuits have much smaller dimensions but higher power and safety.

Integrated circuits are manufactured by doping different types of materials into a silicon substrate, to produce various semiconductor components. The materials doped into the silicon control the movement of electrons through the material, forming a so-called "electricity crystal". 

Definition of Integrated Circuit:

An integrated circuit (IC) is a small chip of semiconductor material and the circuit material connected to the chip. The body is small compared to standard circuits composed of independent circuit components. The most commonly used IC is a single-crystal integrated circuit.

Integrated Circuit (IC) Design:

  1. Analog IC:
    The analog design method is used to design integrated circuits, focusing on perfect power consumption, amplification, and resistance, and is mostly used in oscillators, filters and regulators.
  2. Digital integrated circuits:
    Microprocessors are digitally designed to use binary input data, which maximizes circuit density. This ensures maximum overall efficiency, and is mostly used in computer memory (such as RAM and ROM).
  3. Mixed-signal ICs:
    Hybrid designs combine the principles of analog and digital ICs. Mixed-signal ICs are used in digital-to-analog converters, analog-to-digital converters (D/A and A/D converters), and clock and timer ICs.

The structure of the integrated circuit (IC):

Integrated circuits (ICs) have complex structures composed of semiconductors interconnected by copper and other materials to form resistors, transistors, and other components. The cut and formed combination of these materials is sometimes called a wafer. The chip is very fragile, and the connection between the layers is also quite complicated. Since the integrated circuit chip is too small to be connected by soldering, the integrated circuit needs to be packaged into the common black chip which we are familiar with.

An IC is packaged in such a way that it can be easily connected to its application product. There are many different types of packages, each with a unique size and mounting style. Every pin and function in an IC is unique. Uniquely, ICs use notches or dots to represent the first pin, and once the first pin is identified, the remaining PINs increase sequentially around the die in a counter-clockwise fashion.

Characteristics of Integrated Circuits (ICs):

  • Structure and Packaging: An integrated circuit consists of resistors, diodes, transistors, and capacitors, all connected with highly conductive connectors. Connectors are often made of highly conductive material such as gold to keep the chip from overheating.
  • Dimensions of the integrated circuit: The size of integrated circuits varies from 1 square millimeter to more than 200 millimeters.
  • Integration of integrated circuits: An integrated circuit can combine many different devices with just one chip. A single integrated circuit chip can combine microprocessors, memory, ports, etc.

Technological trends in 5G, augmented and virtual reality, IoT, and autonomous driving are driving unprecedented demand for smaller devices with higher functionality, memory, and speed. From manufacturing and advanced packaging to component packaging and manufacturing, equipment support and maintenance, the industry is committed to continuously improving product performance, process efficiency, and yield to create more semiconductor applications.


Published by Mar 28, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree