91ÊÓƵ¹ÙÍø

The Principle and Difference Between Punching and Blanking Die Processing Technology
Knowledge

The Principle and Difference Between Punching and Blanking Die Processing Technology

Blanking is a punching piece used as a blank on the plate. Punching is punching round holes on the workpiece, and it can be performed simultaneously with blanking.
Published: Aug 17, 2022
The Principle and Difference Between Punching and Blanking Die Processing Technology

What is Punching?

The punching process refers to punching various graphics on steel, leather, cloth, wood, and other materials to meet different needs.

Compared with sheet punching, pipe punching has many similarities in terms of deformation properties and deformation characteristics, but because the pipe is a hollow cylindrical blank, the wall of the pipe is in contact with the convex and concave dies during punching is an isolated surface. It is not flat like a plate, so special technological measures and its mold structure need to be taken. The traditional method of punching is to use a punching die to process through holes on the flat plate. The pipe punching process can be divided into a steel die punching and rubber die punching.

What are the Methods of Punching?

  1. Steel die punching process:
    It is to use the convex and concave dies made of tool steel to punch the pipe. According to the relationship between the movement direction of the punch and the movement direction of the press slide when the die is working, the steel dies punching can be divided into vertical punching and horizontal punching. The so-called vertical punching means that the movement direction of the punch is consistent with the movement direction of the press slider. It is to place the punch on the upper die and move up and down with the slider of the press, while the female die is mounted on the cantilever support of the lower die. Since the die of this type of die is cantilevered, it can be called a cantilever punching die. The so-called horizontal punching means that the movement direction of the punch is perpendicular to the movement direction of the press slider. It fixes the punch and the punch on the lower die and uses the wedge fixed on the upper die to push the slider with the punch on the lower die. Make horizontal movement to achieve the purpose of punching the pipe wall. Because this type of die uses a wedge mechanism to drive the punch to move horizontally, it can be called a wedge punching die.
  2. Rubber dies punching process:
    It is to use the easy deformation and polymerizable of rubber to disperse and place it inside the pipe as an elastic punch instead of the steel punch, to carry out punching processing on the pipe wall. The rubber used as elastic punch includes natural rubber and polyurethane rubber. Since the unit pressure that the former can withstand is not high (generally less than 40Mpa), it is only used for small batch production of soft materials and thin-walled pipes. Polyurethane rubber is an elastomer between natural rubber and plastic. It not only has high strength, but also has a large allowable unit pressure (generally up to 500Mpa), and has a high hardness range, wear resistance, oil resistance, aging resistance, and tear resistance. So long life and can be used for larger batches. Punching on the tube can be divided into two methods: core and coreless. In the cored punching method. The punching process is completed by the cooperation of the upper and lower dies. Different from normal punching, the lower die needs to extend into the tube, and the lower die and the lower die holder cannot be made into a whole.
    When designing the mold, the following factors should be considered:
    • The phenomenon of the uneven wall thickness of the pipe. Since the special-shaped pipe is drawn by welding the round pipe, not only there is a weld on the inner side of the pipe wall, but the uneven pipe wall is a normal phenomenon.
    • The problem of deformation at the punching point of the pipe after punching may cause the core and the pipe to stick together after the punching is completed, and the pipe unloading may be difficult.
    • The burr of the blanking incision of the square tube is large, which affects the penetration of the lower die.
    • Since the upper and lower molds cannot be fixed together, how to connect the upper and lower molds to ensure the convenience of loading and unloading is the key to this process.
  3. Hydraulic punching process:
    The parts formed by the hydroforming process have the advantages of saving materials, reducing costs, and good performance. With the massive use of hydroformed parts. Since the tubular hydroforming parts are hollow, traditional processing methods cannot be used for punching, and laser cutting methods are generally used for processing. Although good processing quality can be guaranteed, the equipment investment is expensive, which is not conducive to reducing costs. As a new type of punching method, hydraulic punching can punch hollow parts and parts with a curved axis, which has incomparable advantages over traditional processing technology. Hydraulic punching does not require a die during the entire punching process, which has great advantages for processing parts that cannot be placed inside a die due to too small internal dimensions or a curved axis. At the same time, the use of hydraulic punching instead of laser cutting plays an important role in reducing the production cost of parts and improving production efficiency. In hydroformed parts, most of the holes can be processed by the hydraulic punching process, except for the oversize or special position on the part.

What is a Dropout?

The required material is separated from the board base material by a press, which is generally called blanking. The material is separated from the base material by various methods (presses, shears, sawing machines, flame cutting, plasma cutting, laser cutting, etc.), which is a blanking process. Use a die to separate the sheet along the closed contour curve or straight line, the punched part is the finished product, and the rest is scrap. The sheet is generally placed on the die, and the punch is pressed down. Since the convex edge of the concave die and punch has a cutting edge, the shearing action occurs while pressing, and the blank of the required shape and size is cut from the sheet for the next step.

91ÊÓƵ¹ÙÍø do Design Blanking and Punching Die?

  • Blanking: Layout, calculate the gap between the convex and concave die, calculate the discharge force, design the mold structure according to the blanking part structure, select the mold material, etc. Blanking is a stamping method of punching a piece of blank as a blank on a plate and using blanking to obtain a part or blank of a certain shape.
  • Punching: Similar to blanking, punching is based on punch, and blanking is based on the concave die. Punching is to punch round holes on the workpiece, and it can also be performed simultaneously with blanking, such as blanking and punching compound die. The material in the blank is separated from the blank with a closed contour to obtain a punching method for a perforated part.

Differences between punching and blanking die processing:

The blank deformation and separation process and die structure of the two processes of punching and blanking are the same. The difference is that the purpose of punching is to obtain parts with holes, and the purpose of blanking is to obtain blanking parts with a certain shape and size. Blanking processing is for blanking of workpieces that need to be further processed, or directly punching out workpieces. Punching is because the pipe is a hollow cylindrical blank, and the wall of the pipe that is in contact with the convex and concave dies during punching is a solitary surface instead of a plane like a plate, so special technological measures and mold structure must be taken. The punching is based on the punch, and the blanking is based on the punching.

Processing features:
  • Plate stamping production mainly relies on die and stamping equipment to complete the processing. The process is easy to realize mechanization and automation, with high productivity and easy operation, so the cost of parts is low. Parts with complex shapes can be punched out, generally without cutting processing, and with less waste, thus saving raw materials and energy consumption.
  • The commonly used raw materials for sheet stamping are low carbon steel, alloy steel with high plasticity, and non-ferrous metals. Which are sheets, strips, or strips with good surface quality, lightweight, low material consumption, high strength, and good rigidity.
  • The dimensional tolerance of stamping parts is mainly guaranteed by the die, so the product has high enough precision and small surface roughness value, stable size, and good interchangeability. 91ÊÓƵ¹ÙÍøever, the manufacturing of the die is complicated and the cost is high, and its superiority is outstanding only under the conditions of mass production.
Published by Aug 17, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree