91Ƶ

What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?
Knowledge

What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?

Industry 4.0 has become an increasingly important topic of concern. Within Industry 4.0, the Internet of Things (IoT) plays an important core role in connecting the entire system, and has developed a wide range of applications. Many people may think that the IoT is far away and does not concern them, but in fact, there are many applications of the IoT in use in everyday life which most people may not realize. This article will share what the IoT is and its application in life.
Published: Apr 28, 2022
What Does Internet of Things Mean? What Are Some Examples of Its Applications in Life?

What is the Internet of Things, IoT?

The Internet of things (IoT) is an interconnected system of computing devices, equipment, and digital machines that digitize the real world. Simply put, it uses digital data to connect items through the Internet, so information can be transmitted and shared. The IoT has actually existed for a long time, with the first application originating in the 1980s. A Coke vending machine was connected to the Internet so that the number of Coke drinks remaining in the vending machine could be checked. With the evolution of technology, smaller, stronger processors have been developed for use in transportation logistics, industrial manufacturing, health care, personal or social fields, etc.

In its broadest sense, the IoT includes any “object” or "thing" that can be connected to the Internet. This may include anything from factory equipment and cars to mobile devices and smart watches. Today’s IoT however, has grown to include interconnected devices that combine sensors, software, and other technologies to transmit and receive data between the devices. Connectivity has traditionally been by Wi-Fi, but now 5G and other types of networking platforms have gradually provided the speed and reliability to handle larger data sets. Of course, the point of collecting data is not just to have it, but to use it. While IoT devices collect and transmit data, the ultimate goal is to analyze the data and develop an informed strategy for action. AI technology excels at enhancing IoT networks through advanced analytics and machine learning.

91Ƶ the IoT Works

A complete IoT system combines three elements: sensors, the Internet, and data processing. Data is collected through sensors and connected to the network via Wi-Fi, Bluetooth, or ethernet. The data is then transmitted to the cloud, where it is processed by software, and finally transmitted to the user. Combined with artificial intelligence (AI) or machine learning, the collected data can be deeply analyzed during the process. There are also many devices today that can coordinate data, and determine better actions to take based on the mutual benefits of the data collected.

Pros and Cons of IoT

Regardless of the technology being used, there will always be advantages and disadvantages. What matters is how the technology can be best used for the greatest benefit. The IoT can automate work, improve work efficiency, reduce equipment and setup costs, and assist in collecting data to save time and money. One challenge for IoT devices is that they are not always easy to manage, and devices from different manufacturers may not be able to communicate with each other. As more and more data is collected, consideration for information security will become more important.

IoT Applications

The IoT has allowed for remote monitoring of cars, homes and health systems. Many home appliances can be controlled through mobile phones. Applications can allow users to improve their quality of life, and enable the elderly and disabled to live more convenient lives.

Smart Manufacturing, Industry 4.0: The IoT used in industry is called the Industrial Internet of Things (IIoT). It connects sensors, meters, equipment and computers through the internet and collects data and analyzes it. This increases productivity and efficiency through a high degree of automation.

Smart City: The IoT can use technology and data to solve problems in cities, thereby improving the quality of life. In Taichung for example, the city has set up 500 "air monitors" in air pollution hotspots. These monitors collect data that locate pollution sources so the management of air pollution can be improved. There are also parking apps that help the public quickly find parking spaces.

Retail: The retail industry is an industry that requires extensive interaction with consumers. Customized marketing, stocking of shelves, checkout, and other retail operations use sensors and data sharing devices that optimize customer experience and improve in-store operations. The Internet of Things can improve the efficiency of supply chain operations and provide a higher value service experience.

Smart Home: A smart home uses the internet to integrate building systems, equipment, and appliances to improve life quality, reduce living costs, provide home care, enhance entertainment and ensure home safety. It can adapt to different lifestyles, such as for the elderly or children, to create a safe, comfortable and environmentally friendly living environment.

Smart Transportation: Technologies such as sensing and processing of traffic information, and electronics control and management can be used to assist vehicles and transportation systems. Safety and efficiency of transportation services can be improved to respond to real time situations.

The rapid development of IoT Technology has the potential to impact many industries. Through the use of unmanned vehicles and computers, improved logistics can save human resources and make many labor-intensive operations more efficient. Companies that grasp the importance of this trend can take advantage of new opportunities to grow and dominate the market.

91Ƶ Will IoT Technology Evolve?

In 2019, IoT devices generated about 18 ZB of data, and by 2025, International Data Corporation expects that number to more than triple to 73 ZB, or 73 billion terabytes. Although we can't measure digital data in physical units, to give an illustration, if all this data were converted to 1990s disks and laid side by side, they could go back and forth from the earth to the moon more than 5,000 times. Developing the IoT will require combining technologies to condense the storage of these large amounts of data.

Connectivity: This surge in IoT data volume requires strong network connectivity to transmit and receive data. Although many IoT devices rely on local Wi-Fi networks to transmit complex and large amounts of data, the cloud and 5G cellular networks are continually evolving to better transmit the ever growing volume of data. Mobile networks will continue to develop as more and more IoT devices disconnect from Wi-Fi networks.

Sensing Technology: As the demand for IoT sensor innovation steadily grows, the market is shifting from a few high-priced niche suppliers to a highly globalized and price-competitive sensor manufacturing industry. The average price of IoT sensors has dropped by more than 70% since 2004, and as demand has skyrocketed, so has the functionality and variety of these products.

Computing Power: The amount of data created in the next three years will exceed the amount created in the past 30 years. To harness this data, modern businesses require ever-increasing amounts of memory and processing power, and the fast-paced and competitive race to achieve this has driven the growth of IoT's usefulness and applicability.

Artificial Intelligence and Machine Learning: These technologies not only allow businesses to manage and process vast amounts of IoT data, but also analyze and learn from it. Big data is the best nutrient for AI and machine learning. The larger and more diverse the data set, the more reliable insights and information can be provided by advanced AI-based analytics. The rise of IoT devices has given a huge boost to the development of artificial intelligence and the amount of data used and provided.

Cloud Computing: Just as connectivity is an integral part of IoT development, the rise of cloud computing is also closely related to this trend. With on-demand processing power and massive storage space, IoT devices are also beginning to adopt cloud IoT services to collect and transmit increasingly large and complex data sets. With private cloud solutions, enterprises can manage larger volumes and types IoT data, while maintaining the security of closed systems.

Edge Computing: Devices within an IoT network are typically distributed in various geographic locations, but all transmit data to a single central system. With the growing volume of IoT data, IoT is starting to drain companies' bandwidth and cloud capacity. In addition, significant time is required to capture, transmit, process and receive data at its final destination, and this delay can further reduce efficiency, especially for businesses that are highly time-sensitive to data processing. Edge computing solutions share the processing pressure of the system by being close to the source of the data by integrating localized computing systems and enabling IoT devices to have the processing power themselves. Data processed by the device is immediately acted upon on-site and periodically transmitted to a central system in a more structured and organized format for advanced analysis and processing.

Published by Apr 28, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree