91ÊÓƵ¹ÙÍø

Integrated Robotics and Advanced Motion Control
Knowledge

Integrated Robotics and Advanced Motion Control

Information is power. Information can not only adjust decision-making but also help discover market opportunities. Use advanced motion control technology to optimize the performance of automated machines.
Published: Mar 26, 2021
Integrated Robotics and Advanced Motion Control

In the information age, health-conscious consumers can easily obtain nutrition information, and consumers have an increasing demand for a variety of healthy, fast, and convenient foods. To meet the needs of consumers, machinery manufacturers and manufacturers must invest in technologies that are conducive to the realization of the factory of the future.

It is well known that machinery manufacturers are under tremendous pressure to provide equipment that can meet flexible manufacturing needs. Consumers have many diversified demands for their favorite packaging products in terms of taste, packaging size, and multiple packaging, which poses a challenge to the current order-to-order production.

The challenge faced by manufacturers of consumer-packaged products (CPG) is to come up with designs that can adapt to future developments, adjust the current conversion to the best state, and quickly add unexpected new inventory units. Until recently, machinery manufacturers had little choice in how to transport equipment to the factory area. Any CPG manufacturing or packaging application is composed of a series of independent machines, and the integration of these machines is a complete packaging line. Many factory areas are still using this old equipment today.

These packaging lines have the following characteristics: use static mechanical parts, friction-type conveying, and are full of different additional equipment. Therefore, although these packaging lines use fixed variables to process the same product to achieve amazing yields, they usually must sacrifice mechanical flexibility. Complicated mechanical adjustments and equipment synchronization processing take a lot of time, but time is very precious to any factory area, especially when the product is released, which requires a lot of production.

Advanced technology

Due to technological advancements, OEMs now have better ways to meet manufacturers' demands for more flexibility. Specifically, three key electromechanical technologies are changing the balance between OEMs and their customers.

First, the use of robots in CPG applications is far more extensive than in the past. Robots are very flexible, because they can fully operate in three-dimensional space, can determine the appropriate path without re-planning complex mechanical paths, and can ultimately handle a variety of product shapes and sizes.

Second, linear motor technology, especially independent cart technology (ICT), can improve the response of machinery to a diverse product portfolio. Different from traditional transportation, traditional transportation allows products to move at a fixed speed on a pre-set path, while ICT will move the products in a smart way when the job is completed.

Finally, automatic conversion can minimize the need for manual intervention, and improve the mechanical settings of new products or packaging configurations through the human-machine interface. The new servo drive function makes this method more cost-effective. Advances in motor control technology can assist manufacturers to meet consumer demand for more product types and packaging sizes.

Integrated robot

Integrated robots are not just the hottest topic. This term can be defined as a single production line or unit controller that controls the robot, which can reduce the number of dedicated robot controllers and related hardware components such as servo motors, drives, teach pendants, and I/O. Demand. This method can use a single controller to control multiple robots and can simplify integration and improve work efficiency.

With the increasing popularity of smart factory systems, the industrial robot market has encountered huge demands in the past ten years, and robots play a pivotal role in it. Research estimates that the global smart factory market is expected to reach 388.68 billion U.S. dollars by 2024, which can provide insights into the overall end-user industrial automation of industrial robots.

The global smart factory market is expected to reach 388.68 billion U.S. dollars by 2024

To meet the needs of a small and diverse flexible production environment, more and more original equipment manufacturers (OEMs) are abandoning fixed mechanical systems and developing innovative methods to integrate robotics and advanced motion technologies. For OEMs, the key question is not just which technology is most suitable for the application, but also the best practices for integrating these technologies into the machinery and plant architecture.

Not long ago, machinery manufacturers had no choice. Advanced technology from third-party suppliers, usually equipped with a proprietary control system. Therefore, mechanical coordination relies on the challenging integration of multiple different systems. For OEMs, this situation will increase the complexity of each stage of the machinery life cycle.

If employees must specialize in multiple systems, it will be difficult to achieve design efficiency, and customer support will be more challenging. If communication is delayed and synchronization will be an obstacle, performance will be difficult to improve. Fortunately, advances in programmable safety controllers (PACs) overcome these obstacles. The latest PAC can provide faster processor speeds and higher performance, which means that machine manufacturers can adopt general methods for machine control. Advanced technologies such as robotics, ICT, and automatic conversion systems can now be implemented on the standard PAC that implements the rest of the machinery.

Single system solution

General mechanical control allows OEMs to integrate, control, and coordinate advanced technologies more easily. It can also simplify the operation and maintenance of the machine for the end-user. The end-user only needs to understand and support one system.

A machine built with a universal control platform can also provide a universal source of information generated by the machine, and put the OEM in a more advantageous position to provide this information in a meaningful way. General mechanical control can provide an outstanding foundation for visualization, reporting, and analysis solutions, and assist in monitoring important factors that affect performance, efficiency, and quality. It allows OEMs to make smarter equipment, which can be more easily integrated into the facility and provides access to information, so that end users can better respond to the ever-changing market needs.

Robot revolution

Today, robots are an important part of daily life. As the product stock-keeping unit (SKU) of products continues to increase, manufacturing equipment must be more flexible and flexible to adapt to more diversified products, and this speed requires better and higher efficiency.

Machine manufacturers are committed to understanding and improving the advantages of robots and their manufacturing needs, so that machine collaboration technology continues to improve. With the assistance of integrated robots, it seems that it is not so difficult to meet consumers' diversified needs for their favorite packaging products in terms of taste, packaging size, and multi-package products.

Due to the development of the Industrial Internet of Things (IIoT), robots can now provide real-time information that helps make business decisions. Through the cloud connection, the robot can be monitored, managed, and maintained remotely. Therefore, suppliers can support the Robot as a Service (RaaS) model.

Smart machines and equipment provide real-time data access capabilities, better connectivity, and strong security.

End-users continue to develop enterprise networking, bringing together information technology (IT) and operating technology (OT) systems into the single network architecture. Smart machines and equipment provide real-time data access capabilities, better connectivity, and strong security.

Whether it is a machine manufacturer or an end-user, integrated robots can provide unprecedented flexibility and agility, giving customers the key to more success.

Use advanced motion control technology to optimize the performance of automated machines

Automation has always been an indispensable focus in Taiwan’s manufacturing industry. In the production process, many automated actions that replace manual labor must be integrated through the motion control system. 91ÊÓƵ¹ÙÍø to overcome the various barriers of motion control and develop a customized motion control system to meet the diverse needs of customers will be a challenge for automated machines.

Under the trend of automation, with the advancement of technology, our work will be more intelligent, but at the same time, we must constantly absorb the latest technology and trends in the market, so that we can maintain the best condition at any time, and have the best combat power at any time every wave of trends.

Published by Mar 26, 2021 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree