91ÊÓƵ¹ÙÍø

Human-machine Collaboration Moves Towards a Safe and Smart Factory
Trend

Human-machine Collaboration Moves Towards a Safe and Smart Factory

With the reduction of the labor force and the rise of labor costs in emerging countries such as China and other Southeast Asian countries, production lines are increasing their reliance on industrial robots for processing or assembly processes. With the development of technology, the environment in which robots and laborers work together will become more common, and safety issues will become more complex.
Published: Mar 31, 2022
Human-machine Collaboration Moves Towards a Safe and Smart Factory

With the robotics industry quickly developing, people often get the impression that robots will make manufacturing processes safer than with traditional manual labor. But this can often give a false sense of safety, causing the operator to lower safety vigilance. This can lead to a higher risk of injury if the robot is not installed with appropriate safety features.

What are industrial robots and collaborative robots?

Industrial robots are completely automatic robots that can perform complete operations without the need for human interaction. Collaborative industrial robots on the other hand are robots that operate in collaboration with workers to perfume a completed task.

As robots have become more common in manufacturing, there has been an increase in labor accidents involving robots in the manufacturing industries of various countries. It was found that accidents occurred most often during maintenance or resetting. Most accidents resulted from human negligence, the failure to follow safety procedures, or the failure of safety control devices. With the development of technology, environments where robots and laborers work together will become more common, and safety issues will become more complex.

ISO/TS 15066 Collaborative Robot Safety Standard:

ISO/TS 15066:2016 Robots and robotic devices - Collaborative robots, specifies that the collaborative operation of collaborative robots includes:

  • Safety-rated monitored stop:
    In ISO/TS 15066:2016 , This ISO protocol requires that a robot has a stop robot function which monitors safety and stops robot movements in the coworking space before an operator can enter the coworking space. When there is no operator in the coworking space, the robot can be set to operate in non-cooperative mode. If an operator is to enter the collaborative workspace while the robot system is within the collaborative workspace, safety monitoring will stop the robot motion from being performed.  Robotic system actions can be restarted only after the operator has exited the coworking space.
  • Hand guiding:
    In this mode of operation, the operator uses a manual operating device to send motion commands to the robotic system. The robot is required to reach a safe-rated supervised stop before allowing the operator to enter the co-working space and perform hand-guided work. This is done by manually actuating a guide at or near the robotic end effector. Robotic systems for manual guidance can be equipped with additional functions such as increased force application, virtual safety zones, or tracking technology.
  • Speed and separation monitoring:
    In this mode of operation, the robotic system and the operator can move simultaneously within the collaborative workspace. Risk is reduced by maintaining a protective separation distance between the operator and the robot at all times. During robot motion, the robotic system is never closer to the operator than the protective separation distance. When the separation distance decreases to a value below the protective separation distance, the robot system stops. When the operator moves away from the robot system, the robot system can automatically restart the operation while maintaining a protective separation distance. When the speed of the robotic system decreases, the protective separation distance decreases accordingly.
  • Power and force limiting:
    In this mode of operation, intentional or unintentional physical contact may occur between the robotic system and the operator. This mode requires the robot to perform cooperative work with a limited power and force application for the specific operation. By keeping the hazards associated with the robotic system below threshold values determined during the risk assessment, the risk is reduced through inherent safety methods in the robot or safety-related control systems.

Robot stop time and collision force / Collision pressure test:

Whether it is the stop time of the industrial robot itself, or the stop time set by the safety device, it is important to evaluate the parameters to closely to determine the safety requirements of the industrial robot. While not important for industrial robots, the collision force and collision pressure between robots and humans are important concerns associated with collaborative robots.

  • Stop time measurement: Industrial robot body
    An external signal trigger is used to obtain stop-time data of the industrial robot body. Induction, touch, and stop time measuring instruments are used.
  • Stop time measurement: Industrial robots with safety devices
    When the user uses the collaborative robot, the robot will often be picking up or discharging material in the collaborative workspace. Therefore, during the operation phase where the robot is within the user’s work area, the stop time will be monitored according to the usage mode of the operation.
  • Collision force measurement: Collaborative robots
    Damping materials with different spring characteristics can be incorporated into the robot’s design to control the force of the robot’s impact if the robot should contact the operator. The position of the operator’s body in relation to the robot is considered, and this information can determine the appropriate operation settings and safety damping material to be used with the robot.
  • Collision pressure measurement: Collaborative robots
    The basic measurements are the same as the collision force measurements, except that when measuring the collision pressure, a pressure measurement film is placed on the damping material to measure the contact pressure. The pressure measurement film can be evaluated to determine pressure area and intensity.

Global Industrial Robot Market Analysis:

In 2020, the market demand for industrial robots and their systems increased sharply. World-wide, the Asia-Pacific region saw the highest volume of industrial robots installed, especially in China, Japan, South Korea, and Taiwan. The continued demand for increase in production capacity will continue to drive the growth of industrial robots. In particular, Selective Compliance Assembly Robot Arm (SCARA) human-robot collaboration is rapidly expanding. In addition to their use on the production line, the application of robots in the logistics, warehousing, and transportation industries is expanding. In 2020, the Asia-Pacific region occupied about 70% of the global industrial robot market, with a market size of US$44.6 billion. This was a decrease of 8.42% year on year compared to US$48.7 billion in 2019, due to the pandemic. 91ÊÓƵ¹ÙÍøever, by 2025, the global industrial robot market is expected to reach US$73 billion, with a compound annual growth rate of 10.36%.

The development trend of industrial robots:

In recent years, the rapid rise in use of collaborative robots has shown that they have become more popular than industrial robots. The main reason is that as a result of the pandemic, the manufacturing industry better understood that using robots as the core of modern production is a key to maintaining competitiveness. In the automotive industry, where robots are often used, with the booming development of electric vehicles, the demand for robots has also increased.

In the manufacturing industry, post-pandemic modernization and digitalization of production with industrial robots will present many new opportunities for development. The advantages of rapid production and the increased production quality that industrial robots give, offers a guarantee of competitiveness. From 2021 to 2026, the number of installations of global industrial robots is expected to grow steadily. As robots become an important foundation of modern manufacturing, their functionality continues to improve. In the future, the trend will be for machinery equipment manufacturers to transform from stand-alone output to integrated services. Robot manufacturers at home and abroad will also increase profits by continuing to provide robotic safety solutions.


Global technology has developed around technical issues such as AI, 5G, B5G, and IoT. Integrated robotic systems will become more intelligent with their development. Key technologies for robot intelligence in the future will be autonomous mobile technology, recognition technology, precision control technology, and long-distance communication technology. The market size forecast of robots is constantly changing, and its expansion depends on the generation of new information and communication technologies such as robot vision, robot lidar, O-RAN architecture for remote real-time control of robots, low-orbit satellites for autonomous mobile communication systems for robots, etc. The new generation of robots will be easier to install and program, and thanks to advances in Information and Communications Technology (ICT), they will be seamlessly connected and integrated into smart manufacturing deployments. 

The improved wireless network connectivity brought about by 5G network technology, as well as the reduction in the price of edge, AI chips, and the increase in processing power, enable the processors in robots to perform AI tasks instead of processing them through the distant cloud. This will lower the delay in response time and increase the application abilities of service robots. Edge AI chips can address and overcome many of the limitations of professional service robots and increase their usefulness, attractiveness, and practical capabilities.


Published by Mar 31, 2022 Source :, Source :

Further reading

You might also be interested in ...

Headline
Trend
Powering the Future: New Energy Vehicles, Sustainable Manufacturing, and Challenges
In the quest for a sustainable and eco-friendly future, the automotive industry is witnessing a profound transformation with the emergence of New Energy Vehicles. New Energy Vehicles, commonly known as NEVs, encompass a wide range of vehicles powered by alternative energy sources or a combination of traditional and renewable energy technologies. The implementation of sustainable manufacturing practices and collaboration among stakeholders presents challenges for NEV development as well as great potential for market growth.
Headline
Trend
Charging Ahead: Recharging Infrastructure in the Electric Vehicle Industry
As the electric vehicle (EV) revolution gains momentum worldwide, one of the critical pillars supporting this transition is the development of a robust recharging infrastructure network. This network plays a pivotal role in the widespread adoption of electric vehicles, ensuring convenience, accessibility, and sustainability for EV owners. Factors contributing to the acceptance of EVs and their associated recharging infrastructure include environmental awareness, advancements in battery technology, vehicle design, the expanding range of available EV models, and the implementation of government incentives to promote these new technologies.
Headline
Trend
Beyond Driving: The Future Landscape of Smart Automobile Technology
As the smart automotive industry embraces the shift toward sustainability, innovation, and connectivity, the manufacturing of Electric Automobiles (EVs) and New Energy Vehicles (NEVs) is shaping the future of transportation. Let’s explore some of the dynamic technology and key factors driving their evolution.
Headline
Trend
Driving Intelligence: The Evolution of Smart Automobile Technology
With the growing acceptance of New Electric Vehicles (NEVs), smart automobile technology has emerged as a fundamental force reshaping the automotive industry. From advanced connectivity and intelligent sensors to artificial intelligence (AI) and Internet of Things (IoT) integration, modern vehicles are evolving into sophisticated, interconnected systems. The manufacturing process of smart electric automobiles and NEVs requires the integration of these various technologies to fully realize benefits such as safety and efficiency, while also addressing evolving regulatory challenges and standards.
Headline
Trend
Riding Strong: Bicycle Frame Materials from Steel to Carbon Fiber
The choice of frame material is a critical decision for cyclists, influencing the performance, comfort, and overall riding experience of a bicycle. From the classic strength of steel to the lightweight versatility of carbon fiber, different materials offer unique properties and characteristics that cater to different riding styles, terrains, and budgets. A good understanding of bicycle frame materials, developing trends and advancements, will help in choosing the right frame material.
Headline
Trend
Electrifying Change: The Impact of E-Bikes on the Bicycle Industry
Electric bicycles, or e-bikes, are reshaping how people commute, exercise, and experience cycling. These innovative vehicles combine the convenience of traditional bicycles with electric propulsion, offering riders enhanced mobility and a more enjoyable riding experience. The impact of e-bikes on the bicycle industry, has brought about new market trends, regulatory challenges, environmental benefits, and future innovations.
Headline
Trend
Virtual Reality Headsets: Applications in the Modern World
In recent years, Virtual Reality (VR) headsets have captured the attention of tech enthusiasts, gamers, and businesses alike, promising immersive experiences that redefine the limits of digital interaction. The demand for VR headsets is expanding across multiple industries, from gaming to healthcare and education, finding many unique applications and benefits. Taiwan, a significant player in electronics manufacturing, has been pivotal in bringing many of these developments to market.
Headline
Trend
USB Flash Drives: Evolution, Trends, and Future Outlook
USB flash drives, commonly known as thumb drives, memory sticks, or USB sticks, are compact, versatile storage devices that have become indispensable tools for data storage, transfer, and backup. Introduced in the early 2000s, USB flash drives offered a groundbreaking solution for portable data storage, replacing older forms like floppy disks and rewritable CDs. Taiwan has played a unique role in the technology development and manufacturing behind these versatile storage devices.
Headline
Trend
Solar Panels with ESS: Sustainable Energy for a Resilient Future
Solar panels combined with Energy Storage Systems (ESS) not only harness the sun’s power but also ensure that energy is stored for future use, making it reliable and consistent. Solar panels with ESS play a critical role in providing energy resilience, reducing emissions, decreasing reliance on fossil fuels, and creating a sustainable future for both residential and commercial energy needs.
Headline
Trend
Vacuum Packaging Machines: Improving Packaging Technology
Vacuum packaging machines have revolutionized the food, pharmaceutical, and industrial packaging industries by providing an efficient means of extending shelf life, maintaining product quality, and improving packaging efficiency. From their early inception to the cutting-edge technologies used today, vacuum packaging machines have seen significant advancements in design and application.
Headline
Trend
Webcam Evolution, Technology, and Trends
Webcams have become an integral part of modern life, serving purposes ranging from casual video calls to professional content creation, security, and even healthcare. Originally designed for basic video communication, webcams have evolved significantly to include HD and even 4K video, specialized microphones, AI-enhanced features, and diverse applications across various industries.
Headline
Trend
Lithium-Ion Batteries: The Power Behind Modern Innovation
Lithium-ion (Li-ion) batteries provide the power for many devices and technologies that define modern life. From smartphones to electric vehicles (EVs), their lightweight and high-energy storage capabilities make them indispensable. Their underlying technology has led to the development of different types, unique applications, and a global manufacturing landscape that has seen a growing role in this dynamic industry.
Agree