91ÊÓƵ¹ÙÍø

Functions and Types of CNC Machining Centers
Knowledge

Functions and Types of CNC Machining Centers

A CNC machining center is a kind of CNC machining machine which has had many other functions added. Combining milling, boring, drilling, tapping, and threading functions into one machine, enables a machining center to perform multiple processes.
Published: Mar 28, 2023
Functions and Types of CNC Machining Centers

What is a CNC machining center?

Machining centers are basic CNC milling machines which have been integrated with multiple other processing technologies. The machining center integrates the processing functions and procedures of a variety of machine tools, such as milling, boring, drilling, tapping and threading, and can complete multiple steps of the processing of the workpiece at one time.

Machining center classification:
  1. Classification according to the relative position of the spindle and the worktable
    • Vertical Machining Center:
      The structure is generally a fixed column with a rectangular worktable. Generally, it has three linear motion coordinates, and a horizontal axis CNC rotary table installed on the worktable to process circular workpieces.
      The vertical machining center is convenient for clamping the workpiece, is easy to operate, and is easy to observe while processing. Some disadvantages are that the chips are not easy to remove during processing, and due to the height limitation of the column and the tool changer, parts that are too high cannot be processed. The vertical machining center has a simple structure, a small footprint, a relatively low price, and a wide range of applications.
    • Horizontal machining center:
      A movable column is used, usually with a worktable that can perform indexing and rotating motion. The spindle box moves up and down along a guide rail between two columns. Horizontal machining centers generally have three linear motion coordinates, facing the machine, moving left and right as the X-axis, moving forward and backward as the Z-axis, and moving up and down as the Y-axis. They can process spiral and cylindrical parts.
      The horizontal machining center is inconvenient to observe during debugging and trial cutting, inconvenient to monitor during machining, and inconvenient to clamp and measure parts, but it is easy to remove chips during machining, which is beneficial to machining. Horizontal machining centers are complex structures that take up a large space, and are high priced.
    • Gantry machining center:
      Spindles are mostly vertical, fitted with an Automatic Tool Changer (ATC) system which replaces spindle head attachments. The automatic tool changer is equipped with a library of replaceable spindle attachments. A numerical control device is programmed to complete a number of machining prosesses, so one machine can be used for multiple purposes. They are especially suitable for processing large or complex parts, such as beams, frames, and wall panels on aircraft.
    • Universal machining center:
      The universal machining center is a five-sided machining center, which has the functions of a vertical machining center and a horizontal machining center combined. The general-purpose machining center has a spindle that can be rotated 90 degrees and can be operated as a vertical machining center. It can also work like a horizontal machining center. The spindle does not change its direction, and the worktable rotates 90° with the workpiece to complete five-sided machining.
  2. Classification according to the number of control axes
    Machining centers can be divided into three-axis machining centers, four-axis machining centers, five-axis machining centers, six-axis machining centers, and other multi-axis machining centers according to the number of controlled axes.
  3. Classification according to processing procedures
    Machining centers are classified according to processing procedures and can be divided into two types: boring and milling.
  4. Classification according to the number of workbenches
    Machining centers can be divided into single table machining centers, double table machining centers, and multiple table machining centers according to the number of tables.
  5. Classification according to the tool changing method of the tool magazine
    According to the tool changing method of the tool magazine, the machining center can be divided into manipulator tool change machining center and non-manipulator tool change machining center.
  6. Classification according to machining accuracy
    Machining centers can be divided according to their machining accuracy into ordinary precision machining centers, high-precision machining centers, and precision machining centers. Ordinary precision machining centers have a resolution of 1μm, with a maximum feed speed of 15-25m/min, and a positioning accuracy of about 10μm. High-precision machining centers have a resolution of 0.1μm, a maximum feed rate of 15-100m/min, and a positioning accuracy of about 2μm. A machining center with a resolution of between 2 and 10μm, and accuracy of ±5 μm can be called a precision machining center.

What are the components of the machining center?

  1. Basic components:
    The basic structure of a machining center consists of a bed, a column, and a workbench. These mainly control the cutting tool of the machining center and remove cutting chips generated during the machining process, so must have satisfactory rigidity. They are usually made with iron or welded steel construction and are the largest and heaviest parts of a machining center.
  2. Spindle parts:
    The spindle consists of a spindle box, spindle motor, spindle, and spindle bearing. The spindle start, stop, speed change, and other actions are controlled by the numerical control system. A cutting tool on the main shaft performs the cutting operation required for the workpiece.
  3. CNC system:
    The CNC part of the machining center consists of CNC equipment, PLC, servo drive equipment, and operation panel.
  4. Automatic tool changing system:
    The tool changing system consists of a tool magazine, manipulator, drive arrangement, etc. When the tool needs to be replaced, the CNC system announces an order, and the CNC machining center manipulator moves the tool from the library into the spindle hole. The instructions for automatic storage, selection, transportation, and communication of tools during machining are managed by the CNC system. 

Main items processed on a machining center:

  • Box parts:
    Box-type parts refer to parts that require processing of multiple holes, shapes and cavities. Such parts are found in many industries such as machinery, automobile, and aircraft, and include items such as engine blocks, machine tools, gear housings, etc.
    Box-type parts are processed on the machining center, and one clamping can complete 60% to 95% of the process. The accuracy of the parts is consistent and the quality is stable. A machining center can shorten the production cycle and reduce costs. For parts requiring many processing stations or where the worktable needs to be rotated several times to complete the parts, a horizontal machining center is generally used. When there are fewer processing stations and the span is not large, a vertical machining center can be used. 
  • Complex surfaces:
    Products such as impellers and propellers machined for aerospace, automobiles, ships, national defense, and other fields often have complex curved surfaces requiring various multiple operations to be performed.
    When the process to be performed can be done in an area with no interference or blind areas on the workpiece, complex surfaces can generally be processed with a three-coordinate, ball-end milling cutter with high accuracy but low efficiency. If the machining area has some form of interference or blind area on the workpiece, a machine tool with four-coordinate or five-coordinate linkage will need to be considered.
  • Irregular parts:
    Most irregular parts that require mixed processing of point, line, and surface features such as brackets, bases, and templates, need multi-station processing. Because the rigidity of special-shaped parts is often generally poor, clamping pressure is difficult to control, and cutting deformation and machining accuracy are difficult to guarantee. With a machining center, measures can be adopted to complete multiple processes by using one or more clamping steps to fully utilize the machining centers capabilities.
  • Sleeves and plates:
    Disk sleeves or shaft parts with keyways, curved surfaces, radial holes, multiple holes, or holes distributed on the end face, are suitable for processing by machining centers. Vertical machining centers should be used for parts with distributed holes, and for workpieces with curved surfaces on the end faces, horizontal machining centers are preferred.
Published by Mar 28, 2023 Source :, Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree