91ÊÓƵ¹ÙÍø

What Is the Digital Transformation of Manufacturing?
Trend

What Is the Digital Transformation of Manufacturing?

Why has the software industry or the hardware industry been talking about digital transformation in recent years? What is the necessity and challenges of Taiwan's manufacturing industry for digital transformation?
Published: Jun 19, 2020
What Is the Digital Transformation of Manufacturing?

Replace feelings with data

In recent years, the development of technology has become faster and faster. Big data analysis, IoT, and artificial intelligence are often dazzled, but if you think about it quietly, you will find that whether it is the software industry or the hardware industry, Doing the so-called digital transformation, but what is the purpose of pursuing digitalization?

To obtain more complete data

In the past, regardless of any industry, people who would say that old experience is very important, because they have a long experience in the workplace, and have encountered large and small things in the work, so when a problem occurs, they can respond faster and make a relatively high accuracy. Decision-making, this is impossible for a newcomer with a good education and a high IQ.

But if people with experience are asked to explain why this is the case, it is difficult for them to explain systematically and structurally. They usually say, "With my years of experience, I feel that I want to do this, and I don’t know why..." It is subjective, and because there is no objective evidence to refer to, sometimes it is easy to misunderstand when communicating with others.

Today, if the feedback of various actions in the workflow can be stored digitally, these are the best evidences, allowing everyone to objectively analyze and discuss the actual data status of each link, and reduce misunderstandings in communication, and to improve the shortage, which is why the digital transformation is being promoted regardless of industry.

Replace sensations with data and strengthen intuition with data

To take the most obvious example, there have been very big changes in the marketing industry in the past few years. In the past, no marketing expert could prove the marketing expenses spent by the company, what impact it caused and what effect it had in the past. Advertisement is like throwing a bird at random. No one knows whether it hits the target customer group, or how many orders come because of the advertisement. The company can only trust the marketing experts completely.

But in the past few years, with the advancement of network technology, e-commerce has been able to achieve precise marketing, accurately target the target customer group, and can display detailed reach rate, conversion rate...etc. This is the data analysis power.

Digital transformation and development of the hardware industry

Before delving into the digital transformation of manufacturing, let’s talk briefly about the development of IT and OT. Most people have heard that software information technology is called IT (Information Technology), and hardware equipment technology is called OT (Operation Technology) in the industry.

Early IT and OT were doing their things. Various information systems (ERP, MES, SCM, CRM... etc.), regardless of finance, accounting, customer list, production management... etc., were responsible for software engineers in the IT department, 91ÊÓƵ¹ÙÍøever, the on-site OT hardware equipment engineers are responsible for the various process equipment of the factory, and the information of each other is not directly connected. When the company's financial accounting system requires various manufacturing time and costs of the factory, only on-site personnel can be asked to count and enter data manually, which is relatively low in terms of timeliness and accuracy.

Software companies, especially Internet companies (Google, Facebook) have long understood the importance of data, so they have worked hard to collect behavioral data very early.

Although the hardware manufacturing industry has a slow start, it also recognizes the importance of digital transformation. Only by grasping more real manufacturing data can we reduce the error rate of manual operations, improve the accuracy of decision-making, and better achieve quality control. Even quality prediction, equipment predictive maintenance.

The concept of smart manufacturing has actually existed since the beginning of the 21st century, but it was limited by the lack of maturity of the hardware communication technology at that time, and the cost of introduction was also very high. Therefore, only the semiconductor industry that requires the most process precision is introduced first, and only They have this financial power.

By around 2015, the hardware communication technology has become more mature, the product price has dropped a lot, and the situation of device networking has become more popular. This is why the Internet of Things (IoT of Internet) has suddenly been discussed by many people. With such technical support, the concept of smart manufacturing has been erupting for a long time, and more and more manufacturing companies are actively introducing it.

From Industry 1.0 to Industry 4.0

Is smart manufacturing automation? The answer is no. Automation is only the first step of intelligence. Automation is to reduce manual operations, whether it is production, handling, or data copying. Intelligence is to summarize and analyze the collected data to improve the accuracy of decision-making. rate. The two are different, and there is still a way to go from automation to intelligence.

If smart manufacturing is divided into different stages, the current highest stage is the so-called Industry 4.0. Briefly explain the difference between industry 1.0 and 4.0:

  • Industry 1.0 is mechanization, using machinery to replace manpower and animal power to accomplish things that could not be done otherwise.
  • Industry 2.0 is automation, using various sensors and PLC controllers to allow the device to automatically mass produce the same product.
  • Industry 3.0 is informatization, and began to collect production data for statistical analysis to improve R&D efficiency and reduce production costs.
  • Industry 4.0 is intelligent. It integrates information flow, gold flow and logistics through the network, collects a larger amount of more real-time data, and the system assists in data analysis and prediction. For example, when an order comes in, the production line can immediately adjust the production schedule and shipment according to the order content, and achieve quality prediction and equipment predictive maintenance.

Most of the small and medium-sized manufacturing industries in Taiwan are still at the stage of Industry 2.0, that is, the production line equipment has certain automation capabilities and can be mass-produced, but for various types of production data, such as process data, production staff identity, and production time …Wait, not much is collected, and manual work is required, so that the data cannot be real-time, and there is also the risk of copying errors and loss.

What is smart manufacturing?

Besides, many people also asked if IT+OT is smart manufacturing?

It is true to have these two fields, but one important field is missing, that is, industrial knowledge (Domain Know-how or Data Technology, DT). Whether it is OT's automation equipment or IT information system, these are just tools. , Software and hardware integration can only collect more data more conveniently, but how to apply the analysis results to actual work, this tool cannot help.

Only customers themselves understand the needs of the industry best. Without industry knowledge, no amount of data is useless. Therefore, only by combining the three fields of DT, OT and IT can we achieve true smart manufacturing.

Introduce any new technology, the management thinking should also be adjusted

But the integration of the above three areas is only basic. Many companies still ignore one thing, that is, management thinking.

When all management systems are established at the beginning, they must develop the most suitable management model under the existing constraints. When the company introduces new technology tools, it breaks through some of the original restrictions, such as communication methods, collaboration methods, etc., but if it still uses the old management model and system, it is still tied to the old restrictions.

Therefore, digital transformation is not about buying software or installing hardware. The most difficult and time-consuming is actually to adjust the company's existing management thinking and models.

Just like any company is going to import ERP is a big deal, because not only is the system installed, the entire company's work flow and management system must be adjusted, and the usage habits must also be changed. This is a process that is necessary for the introduction of any new technology. Smart manufacturing is also needed.

The needs of Taiwan's manufacturing customers

Although Industry 4.0 looks the most powerful does every factory need to achieve Industry 4.0? I don’t think so.

The characteristics of some industries do not require too precise control. From the perspective of business thinking, if the value collected by sophisticated data for customers is not in line with the investment cost compared to the investment costs that customers have to pay there is no need to do it.

For the small and medium-sized business customers I met, the most needed at present is to upgrade from Industry 2.0 to Industry 3.0, that is, to introduce paperless electronic newspaper or electronic production resume, the system can automatically record each order is Who did it, the actual production quantity and operating time... etc., and integrated various ERP and MES information systems, so that no matter the production management, quality control, warehouse can quickly obtain production data, greatly improve work efficiency, but not yet Need to do so-called big data analysis and prediction.

Of course, some large customers want to do data analysis, quality prediction, and equipment prediction and maintenance, but this will require customers to invest more capital and time before they can achieve the method. The relevant IoT infrastructure must be completer and more collected enough data, so that the results of the analysis will be more accurate, definitely not in the short term.

In the field of smart manufacturing, there is no best solution, only the most suitable solution. According to the actual needs of different customers, to help tailor a most suitable plan to bring customers the greatest return on investment.

Published by Jun 19, 2020 Source :

Further reading

You might also be interested in ...

Headline
Trend
Grinding Robots and Human Machine Collaboration
The integration of robotics into grinding processes can greatly transform traditional manufacturing into dynamic environments where human workers and robots collaborate seamlessly. While robotics offers precision, consistency, and efficiency, skilled operators are essential for the efficient operation of advanced grinding machines. Training programs are important to provide hands-on education, certification, and expertise in setup, operation, and troubleshooting for optimal performance.
Headline
Trend
Keyless Digital Electronic Door Locks: The Evolution of Security
We've all had the experience of returning home with our hands full, juggling packages while fumbling for keys. 91ÊÓƵ¹ÙÍøever, there are innovative solutions that prevent this predicament by eliminating the need for traditional keys. Keyless digital electronic door locks utilize a variety of technologies to provide secure, flexible access control without the traditional key. Advanced technologies that use various forms of authentication, such as codes, biometrics, and smartphones, not only streamline your entry process but also enhance the security of your home.
Headline
Trend
Refining the Essence: Three Fundamental Pillars of Smart Industrial Manufacturing
The conventional manufacturing sector stands at a crossroads necessitating a shift towards intelligent transformation. By incorporating advanced production technologies, a new era of industrial development is inaugurated.
Headline
Trend
The Role of Artificial Intelligence in Autonomous Vehicles
Utilizing machine learning and neural networks, artificial intelligence (AI) plays a crucial role in enabling the autonomous operation of self-driving cars. These vehicles leverage a combination of sensors, cameras, radar, and AI to navigate between destinations without the need for human intervention. For a car to be considered fully autonomous, it should demonstrate the capability to independently navigate predetermined routes without human input, even on roads that have not been specifically modified for autonomous vehicle use.
Headline
Trend
Worldwide Bicycle and Electric Bicycle Market Overview
The global increase in environmental consciousness has resulted in a shift for bicycles from primarily sporting and recreational roles to becoming popular modes of commuting. Notably, the rising adoption of electric bicycles is driven by factors such as an aging population, contributing to a significant upsurge in the global production of electric bicycles in recent years.
Headline
Trend
Opportunities and Trends in the Application of 5G in Smart Grids
In recent years, developed nations have initiated comprehensive power grid upgrade initiatives. In line with its commitment to energy conservation and carbon reduction policies, Taiwan has advanced the implementation of Automated Metering Infrastructure (AMI) as part of its national energy-saving strategy. The plan encompasses the integration of 4G/5G and other communication industries. The noteworthy progress in the development and integration of smart grid applications with 5G communication technology represents a significant industrial advancement deserving of attention.
Headline
Trend
Confronting the Era of Digital Advancement, Facial Recognition Technology Has Enhanced
Recently, there has been widespread discussion about Artificial Intelligence, Machine Learning, Deep Learning, and Big Data. These technologies find application in various domains such as the financial industry, logistics, business analysis, unmanned vehicles, computer vision, natural language processing, and more, permeating every facet of daily life.
Headline
Trend
91ÊÓƵ¹ÙÍø Can Humans Collaborate with Robots in a Work Environment?
The integration of collaborative robots into production has become a pivotal element in the manufacturing chain, enhancing overall production efficiency. These compact collaborative industrial robots are designed to operate in confined spaces, addressing challenges posed by limited working spaces.
Headline
Trend
Can 3D Printing Be Applied in the Die and Mold Industry?
As the utilization of 3D printing expands across the broader spectrum of industrial manufacturing, the significance of this technology extends beyond its role as a rapid prototyping tool. This article provides an overview of the applications of 3D printing in the fabrication of molds and dies for processes such as injection molding and die casting.
Headline
Trend
Industry 4.0 Propels the Global Industrial Market Towards Automation
In the present day, conventional industries are blending Internet of Things technology to drive the evolution of Industry 4.0 and the advancement of smart manufacturing.
Headline
Trend
The Essence of Additive Manufacturing
Additive manufacturing is playing an increasingly important role in the manufacturing industry and is mainly used in toolmaking and prototype construction.
Headline
Trend
Exploring the Concept of Advanced Manufacturing
Advanced manufacturing is the use of innovative technologies to improve products or production processes. Related technologies are called "advanced", "innovative" or "frontier". Advanced manufacturing technology is gradually maturing, integrating innovative technology into products and manufacturing processes to enhance competitiveness and increase value.
Agree