91ÊÓƵ¹ÙÍø

Delving into the Core of Flexible Manufacturing
Knowledge

Delving into the Core of Flexible Manufacturing

Flexible production refers to relying on highly flexible manufacturing equipment mainly based on computer numerical control machine tools to realize multi-variety and small-batch production methods. Committed to the goal of zero switching costs, and reduce this waste as much as possible; then the capacity can be adjusted to make it consistent with the market demand capacity.
Published: Jun 16, 2023
Delving into the Core of Flexible Manufacturing

One of the important factors in the rise of China's manufacturing industry is the realization of the domestic large-scale production effect, but with the improvement of consumption levels, people are increasingly favoring personalized and customized products. Flexible production is an advanced birth in this context Manufacturing concept. Flexible production will be the direction that some manufacturing companies need to focus on in the future. While flexible manufacturing will transform manufacturing production, it will also have a huge impact on the manufacturing business model.

What Is Flexible Manufacturing?

As mass-production reaches a bottleneck, consumers' personalized needs are increasingly strong. Flexible manufacturing is produced in response to "mass customization" production, which has the characteristics of small batches and many varieties and achieves efficient control of the production process with its good planning.

Flexible manufacturing models are widely available, such as the customization that is common in our lives. This consumer-oriented, production-oriented production mode is the traditional mass production mode. Flexible manufacturing, the test is the reaction speed of the production line and supply chain. For example, the "C2B" and "C2P2B" models that are emerging in the field of e-commerce reflect the essence of flexible manufacturing.

Flexibility can be expressed in two aspects:
  • The first aspect refers to the flexible reaction capacity of production capacity, that is, the small-batch production capacity of machinery and equipment.
    The device utilization rate and productivity are high, and the unit cost is relatively low. 91ÊÓƵ¹ÙÍøever, it can only process one or a few similar parts, and it is difficult to cope with the production of small and medium batches of many varieties. As the era of mass production gradually moves towards the era of production-oriented to adapt to changes in the market, it is the competitiveness of a manufacturing system to develop multiple varieties, high-quality, and low-cost products in a short time. Flexible manufacturing just meets this point, and its weight in the development of the manufacturing industry is getting heavier and heavier.
  • The second aspect refers to the agility and precision of the supply chain.
    Flexible manufacturing, the supply chain system responds to individual demand for production and distribution. From the traditional "production-to-sale" to "production-to-sale-to-to-to-to-to-to-to-to-to-to-to-to-be-to-to-to-to-to-be-to-to-to-to-be", the production order is completely triggered by consumers alone, and its value chain is displayed as "Tai Cai to produce to sell to goods" is a fully targeted activity with clear personal characteristics. In this process, it not only poses major challenges to the production machines but also revolutionizes the traditional supply chain.
The "flexibility" of the manufacturing system can be reflected in:
  1. Device flexibility-When it is required to produce a series of different types of products, the difficulty of the machine processing different parts with the product changes.
  2. Process flexibility-the ability to use different materials to manufacture a given part/product type.
  3. Product flexibility-unique conditions to change the economy and speed of producing a new set of parts or products.
  4. Work flexibility-the ability to deal with failures, and continue to manufacture a given set of parts/product types, using alternative routes.
  5. Flexible production capacity-the ability to maintain profitability in different series of production volumes.
  6. Expansion kit flexibility-The potential of the expansion kit is gradually expanded in a modular manner.
  7. Production flexibility-the volume of parts/product types that the system can produce.

Flexible Manufacturing Technology

  1. Flexible Manufacturing System (FMS). Multiple fully automatic CNC machine tools, connected by a centralized control system and material handling system, can realize the processing and management of multiple varieties and small and medium batches without downtime.
  2. Flexible Manufacturing Cell (FMC). The advent of FMC and its use in production are about 6 to 8 years later than FMS. It is composed of 1 to 2 processing centers, industrial robots, CNC machine tools, and material transport and storage devices. It has the flexibility to adapt to processing many varieties of products.
  3. Flexible manufacturing line (FML). It is a production line between a single or a small variety of large-volume non-flexible automatic lines and small and medium-sized batches of multiple varieties of FMS. The processing device can be a general-purpose machining center or a CNC machine tool; it can also be a dedicated machine tool or an NC-specific machine tool. The flexibility requirement of the material handling system is lower than that of FMS, but the productivity is higher. It is represented by the flexible manufacturing system in discrete production and the decentralized control system (DCS) in the continuous production process. It is characterized by the flexibility and automation of the production line.
  4. Flexible Manufacturing Plant (FMF). FMF connects multiple FMSs, is equipped with an automated three-dimensional warehouse, and communicates with a computer system. It uses a complete FMS from ordering, design, processing, assembly, inspection, delivery to delivery. It includes CAD/CAM and puts the computer integrated manufacturing system (CIMS) into practice to realize the flexibility and automation of the production system, thereby achieving the full-scale production management, product processing, and material storage and transportation procedures of the entire plant. FMF is the highest level of automated production, reflecting the world's most advanced automation application technology. It integrates the automation of manufacturing, product development, and operation management as a whole, and is represented by the intelligent manufacturing system (IMS) that controls the material flow of information. It is characterized by the flexibility and automation of factories.

Technology has always been an important factor driving the evolution of the business environment, and the current hottest technology upgrade trend is undoubtedly artificial intelligence. At present, although the artificial intelligence industry itself has entered a stable development period, its empowerment for all walks of life is being carried out more enthusiastically.

In the future, large-volume production and low-cost labor-intensive industries will be relocated in large quantities. Small-volume, customized flexible manufacturing capacity will become the mainstream of China's manufacturing industry. The so-called flexible production refers to the realization of mutual conversion between small batch production and large batch production on the production line based on ensuring product quality. As we often mentioned, mass customization is only an important form of flexible production, not a universal standard.

During the implementation of flexible production, the application of intelligent robots has become an important driving force for achieving the optimal goal of flexible production. The key to "machine substitution" is to achieve software flexibility, automatic programming, and automatic operation. It mainly solves the problem of high labor costs encountered by enterprises during operation. On the other hand, in the application process of robots, it can indeed improve the efficiency of related operations, but it does not necessarily improve the overall efficiency of the enterprise. To make the robot fully play its role, it also needs to integrate production, manpower, and information Simultaneous planning of infrastructure and production line infrastructure construction will integrate robot applications into the overall process of industrial production.

Supply chain collaboration is the foundation of flexible manufacturing. In the process of achieving supply chain collaboration, it is necessary to achieve the consistency and unification of the information in all links of the industry chain. ERP is enterprise resource planning management, MES is a factory-oriented management information system. Most manufacturing enterprises ERP and MES are two sets of systems, the two are independent of each other, and the intelligent management system in the world can realize ERP, MES integration and collaboration, further docking with public big data, real-time analysis and sharing of order data and demand data, to establish a real-time collaborative supply chain.

Published by Jun 16, 2023 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree