91ÊÓƵ¹ÙÍø

What Is the Cryogenic Treatment Process?
Knowledge

What Is the Cryogenic Treatment Process?

Low-temperature treatment is a sub-zero process, which is carried out immediately after quenching and is carried out by continuous tempering. The ultra-cold treatment has a significant improvement in the wear strength of the workpiece and has a breakthrough benefit for the stability of the mold size.
Published: May 05, 2021
What Is the Cryogenic Treatment Process?

With the continuous development and innovation of the machinery industry, the requirements for the precision of metal materials are getting higher and higher. 91ÊÓƵ¹ÙÍø to improve the mechanical properties and service life of metal workpieces is a technology that the manufacturing industry wants to breakthrough. After the heat treatment process, the hardness and mechanical properties of the steel are greatly improved, but after the heat treatment, the following problems are still encountered:

  1. Residual Austenite. The ratio is about 10%-20%. Because Austenite is very unstable, it is easy to transform into Martensitic when subjected to external force or environmental temperature changes, which will cause irregular expansion of the material and reduce the dimensional accuracy of the workpiece.
  2. The structure has coarse grains, and the material carbides are solid solution and supersaturated.
  3. Residual internal stress. The residual internal stress after heat treatment will reduce the fatigue strength and other mechanical properties of the material, and easily lead to deformation of the workpiece during the stress release process.

And through the application of cryogenic and ultra-cryogenic treatment technology, it will be improved.

What is the cryogenic treatment?


Low temperature treatment is a metal treatment that enhances and enhances the mechanical properties of metal materials by using low temperature. Placing the workpiece at a temperature below -190°C can improve properties such as wear resistance and stability.

Cryogenic treatment is a post-heat treatment process that treats the metal at -100°C so that almost all the soft residual Austenite is converted into high-strength Martensitic, and can reduce surface looseness and surface roughness. When this process is completed, it will not only the surface can almost increase the strength, wear resistance, toughness, and other performance indicators of the entire metal, so that the molds and tools will still have high wear resistance and high strength after several refurbishments, and the life will be doubled. increase. The service life of knife and scissors products that have not undergone cryogenic treatment will be significantly reduced after refurbishment. Cryogenic treatment is not only applied to knife and scissors products, but also can be applied to the molds for making knife and scissors products, and can also significantly increase the life of the mold.

Principles of cryogenic treatment technology

  1. Eliminate retained austenite:
    Generally, the residual Austenite after quenching and tempering is about 8-20%. The residual Austenite will be further Martensitic over time. During the Martensitic transformation process, it will cause volume expansion, which will affect the dimensional accuracy and make the lattice interior the increase in stress seriously affects the performance of the metal. Cryogenic treatment can generally reduce the residual Austenite to less than 2% and eliminate the influence of the residual Austenite. If there is more residual Austenite, the strength will be reduced. Under the action of cyclic stress, it is easy to fatigue and falls off, causing nearby carbide particles to hang in the air, and quickly fall off with the matrix to produce spalling pits, forming a relatively rough surface.
  2. Fill the internal gaps to increase the metal surface area, namely the wear-resistant surface:
    Cryogenic treatment enables Martensitic to fill the internal voids, make the metal surface denser, increase the wear-resistant area, smaller crystals, increase the depth of the quenching layer, increase the number of renovations, increase the stability, and increase the life of materials and objects.
  3. Precipitation of carbide particles:
    Cryogenic treatment not only reduces the residual Martensitic but also precipitates carbide particles. The shrinkage of martensite during the cryogenic process forces the reduction of the crystal lattice and drives the precipitation of carbon atoms. Moreover, because the diffusion of carbon atoms is difficult at low temperatures, the size of the carbides formed is up to Nanometer level and attached to the Martensitic twin belt, increase the hardness and toughness. Cryogenic treatment can transform most of the residual Austenite into Martensitic, and precipitate carbide particles in Martensitic, accompanied by the refinement of the matrix structure.
  4. Reduce residual stress
  5. Make the metal matrix more stable
  6. Increase the strength and toughness of metal materials
  7. Increase the metal hardness by about HRC1~2
  8. Increased redness

Cryogenic process: Cryogenic treatment is carried out in three stages: cooling, heat preservation, and heating.

  1. Cooling stage
    The purpose of slow cooling is to eliminate residual stress. Because in the process of quenching and tempering, residual stress will be generated in the metal matrix. In the process of residual Austenite transforming to Martensitic, the volume expansion will also increase the residual stress. Only by slow cooling can the increase in residual stress be offset. And eliminate residual stress. The residual stress in the matrix is generally ignored, but it is the residual stress in the matrix that causes defects such as cracks in the knife and scissors products. The rapid cooling will increase the residual stress.
  2. Insulation stage
    The purpose of heat preservation is to make all the residual Austenite in the matrix turn into Martensitic as much as possible, and produce as many carbide particles as possible, because the process of residual Austenite to Martensitic is a slow process, and the length of the heat preservation time will affect the residual austenite. The amount of the transformation of the intensification and the life after deep cooling is mainly determined by the length of the holding time. Normally, the performance of holding for 2 to 4 hours has been improved, but if it is a high-quality product, you need to use 24 For the holding time of more than hours, the life-span improvement multiple is directly related to the length of the holding time.
  3. Heating stage
    The main purpose of the slow heat process is to prevent the generation of residual stress.

The best time for cryogenic treatment

It is generally believed that cryogenic treatment should have the best effect within two hours of quenching the workpiece, because the residual Austenite will gradually transform to Martensitic over time, and the transformed Martensitic will solidify, thereby reducing the ability to precipitate carbides.

Factors affecting the cryogenic effect:

  • The same cryogenic treatment process has different effects due to different materials
  • The same cryogenic treatment process has different effects due to different workpiece shapes
  • The lower the temperature, the better the effect
  • The longer the time, the better the effect
  • After cryogenic treatment, the corrosion resistance of the material is improved
Application of cryogenic treatment technology:

Cryogenic treatment can increase the wear resistance of tools and molds, and the cryogenic treatment process is applied to molds, knives, scissors, and measuring tools. Many professional cryogenic treatment plants use ready-made processes to perform cryogenic treatment for customers to improve the quality of their products.

Published by May 05, 2021 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Headline
Knowledge
Precision Drilling: Achieving and Maintaining Accuracy with Modern Drill Machines
In machining manufacturing, drilling machine technology plays a pivotal role in shaping the efficiency and precision of the industry. The integration of artificial intelligence (AI), machine learning (ML), and the Internet of Things (IoT) along with Industry 4.0 in drilling operations has been driving enhanced precision and overall productivity.
Headline
Knowledge
Basics of Milling Machines and Multi-Axis Milling
Milling machines are versatile tools that play a pivotal role in shaping and carving materials with precision and accuracy. The milling process involves the removal of material from a workpiece using a rotating cutter. As the cutter moves across the workpiece, it shapes and refines the material, creating intricate designs or precise components. The milling process can mill a workpiece's single face, called face milling, or perform peripheral milling and complex machining operations.
Headline
Knowledge
Smart Grinding: Harnessing IoT for Enhanced Performance and Predictive Maintenance
The integration of cutting-edge technologies in the machine tools industry is reshaping the way manufacturers approach grinding processes. One transformative force is the Internet of Things (IoT), which enhances performance and enables predictive maintenance in smart grinding systems. Real-world applications are showcasing the power of these innovations.
Agree