91ÊÓƵ¹ÙÍø

What Is A CNC Lathe Machine, And Its History Evolution In Machinery
Knowledge

What Is A CNC Lathe Machine, And Its History Evolution In Machinery

The lathe is the earliest working mother machine. Most of the circular parts are processed to make longitudinal or horizontal movements, and the rotating workpiece fixed on the chuck is cut to change its appearance and shape, making it a practical product.
Published: May 13, 2020
What Is A CNC Lathe Machine, And Its History Evolution In Machinery

The range of lathe work is extremely wide, such as outer diameter turning, face turning, taper turning, thread turning, class turning, grooving and cutting, drilling center holes, drilling, boring, embossing, eccentric turning, balls and curved surfaces Turning, etc. all belong to its processing scope.

Evolution of CNC lathe machining

CNC is a Computer Numerical Control (CNC) machine tool. It uses a digital signal operating system to control the process equipment in the production system. Today, most numerical control machine tools use computers to perform arithmetic control. The so-called lathe machining refers to the machining behavior that the workpiece moves in a circular motion and the tool moves in a linear motion. The earliest lathe processing is said to be that ancient humans used ropes to turn wood and then held tools for turning. In the industrial revolution, a large number of metal products were widely needed, and lathe processing became the key to production. Later, after the development of steam engines, the application of belts and gears, all-gear high-speed lathes finally appeared. Until now, CNC lathe processing equipment has gradually replaced traditional lathes, production efficiency has doubled, and parts processing accuracy has also been greatly improved, becoming an important indicator of national modernization.

Lathe processing materials and equipment types

Lathe processing materials include various types of metal hardware grinding, stainless steel grinding, steel, aluminum alloy, tungsten steel grinding, white iron, copper, titanium, molybdenum, metal composite materials, magnetic materials, zirconia, ceramics, silicon crystal, PEEK, engineering plastics, PPS, etc.

Types of lathe equipment:

Ordinary lathe or Engine Lathe is a general-purpose machine tool. It is the predecessor of today's high-speed lathes. It already has the complete functions of lathes. As long as the operator is skilled, the workpieces with low accuracy can be completed, and the price Very cheap.

  1. Automatic Lathe The automatic sequence control, feeder, and discharge mechanism not only have very high processing efficiency but also can operate unmanned for a long time, suitable for small parts.
  2. Vertical lathe machining (Vertical Lathe) The lathe head is placed vertically, the workpiece is easy to load and unload, and the trouble of chip accumulation and deformation is reduced. In recent years, a highly automated inverted lathe has even been developed.
  3. Table Lathe Processing (Bench Lathe) The lathe processing equipment that can be used on the table is suitable for the processing of small parts such as measuring tools, instruments, clocks, and watches.
CNC lathe processing equipment (Computerized Numerical Control Lathe)

In the early numerical control NC lathe processing equipment, it is necessary to drive the data into the hole belt, and then the control unit converts the above data into a signal to facilitate automatic turning processing.

For CNC lathe processing equipment, the personnel enters the data into the computer to generate the G code, and then the CNC controller drives the machine for precision processing.

Computer numerical control CNC (complete computer control) machine tool

From 1960 to 2000, the numerical control system was extended to other metal processing machines. Until the computer microprocessor is applied to numerical control, the working mother machine can not only be directly operated by humans but also can be automatically controlled to greatly improve the function. Such a system is called computer numerical control (CNC). During this period, new, fast, multi-axis machine tools also appeared. In particular, Japan successfully broke the traditional form of the main shaft of the machine tool, moved the main shaft of the machine tool with a spider-like device, and controlled it with a high-speed controller. The CNC machine also makes a part, not only the job of the technician but also the programmers.

The CNC program can be divided into the main program and an auxiliary program (subprogram). Any part of repeated processing can be written with an auxiliary program to simplify the design of the main program.

Character (numerical data) → word → single block → processing program.

Just open the notepad in the Windows operating system to edit the CNC code, and the written CNC program can use the simulation software to simulate the correctness of the tool path.

The CNC program can be divided into the main program and an auxiliary program (subprogram). Any part of repeated processing can be written with an auxiliary program to simplify the design of the main program.

Character (numerical data) → word → single block → processing program. Just open the notepad in the Windows operating system to edit the CNC code, and the written CNC program can use the simulation software to simulate the correctness of the tool path.

CNC automatic lathe processing advantages:

Due to the ideal design of cutting speed and feed, the tool cost is relatively low, and the unit cost can be reduced in a small number of diverse production modes, especially when the shape of the finished product is complex and fine. If the program is well designed, it can be used for machine tools at different times and places. To produce the same product, there is no need to redesign, so reduce the upfront cost and preparation time. "Adaptive control" can maintain the machine tool in the best production conditions and extend the life of the tool.

  • Exemption of much pre-operation time
  • Can reduce inspection costs
  • The operator does not need to possess advanced technology
  • The use of special molds and fixtures can be eliminated, saving processing time
  • Automatic tool change, feeding, etc., with a higher degree of automation.
  • High efficiency, high quality, and high yield.
Advantages of personnel management:

It can reduce labor and personnel costs, machine operation is simple, an operator can operate several machines at the same time. The processing time and unit cost are easy to control and master, so the production plan can be effectively mastered, and the dull material can be reduced. Once the programming is completed, the operation reduces dependence on high-tech operators, thereby eliminating operator errors and improving yield.

Disadvantages of CNC automatic lathe processing:
  • The initial purchase cost of the CNC machine tool is high.
  • Program personnel must have knowledge of processing and operation.
  • The equipment is precise and complex, and the cost of maintenance and repair is high.
  • Rely on programmers, mechanical maintenance professionals. Such personnel training is more difficult than general technicians.
Published by May 13, 2020 Source : Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree