91ÊÓƵ¹ÙÍø

Basics to An Electronic Connector
Knowledge

Basics to An Electronic Connector

Electronic connectors are also often referred to as circuit connectors, electrical connectors, and conductor devices that bridge two conductors on a circuit so that current or signals can flow from one conductor to another. An electronic connector is a motor system that can provide a separable interface to connect two secondary electronic systems. Simply put, the components used to complete the electrical connection between circuits or electronic machines are called connector.
Published: Jul 26, 2022
Basics to An Electronic Connector

What is A Connector?

Connectors are a component that electronic engineering technicians often use. Its function is very simple: it sets up a bridge of communication between the blocked or isolated circuits in the circuit, so that the current flows and the circuit realizes the predetermined function. Connectors are an indispensable part of electronic equipment, and you will always find one or more connectors along the path of current flow. The form and structure of connectors are ever-changing, and there are various forms of connectors with different application objects, frequencies, power, and application environments. For example, the connector used to light a light on a court is very different from the connector used to drive a hard drive, and the connector used to ignite a rocket. But no matter what kind of connector, it is necessary to ensure that the current flows smoothly, continuously and reliably. In general terms, what the connector connects is not limited to current. In today's rapid development of optoelectronic technology, in the optical fiber system, the carrier of the signal is light, glass and plastic replace the wires in the ordinary circuit, but the optical signal connectors are also used in pathways, and they serve the same purpose as circuit connectors.

Why Use Connectors?

Imagine what it would be like if there were no connectors? At this time, the circuits should be permanently connected with continuous conductors. For example, if an electronic device is to be connected to the power supply, both ends of the connecting wire must be firmly connected to the electronic device and the power supply by some method (such as welding). As a result, it brings a lot of inconvenience to both production and use. For example, assuming that the battery cable is fixed and welded to the battery, the car manufacturer increases the workload for installing the battery, increasing the production time and cost. When the battery is damaged and needs to be replaced, it is necessary to send the car to a repair station, remove the old one by de-soldering, and then re-soldering the new one, which requires more labor costs. Having the connector saves a lot of hassle, just buy a new battery from the store, disconnect the connector, remove the old battery, put in the new battery, and reconnect the connector. This simple example illustrates the benefits of connectors. It makes the design and production process more convenient and flexible, reducing production and maintenance costs.

Benefits of Connectors

1. Improve the production process: Connectors simplify the assembly process of electronic products. The mass production process is also simplified.

2. Easy maintenance: If an electronic component fails, the failed component can be quickly replaced when the connector is installed.

3. Easy to upgrade: As technology advances, components can be updated when connectors are installed, replacing old ones with new and better components to improve design flexibility. Using connectors enables engineers to design and integrate new products and with greater flexibility when composing systems with components.

Basic Structure of The Connector

The basic structural parts of the connector include contacts, insulators, shells (depending on the variety), and accessories.

1. Contacts: It is the core part of the connector to complete the electrical connection function. Generally, a contact pair is composed of a male contact piece and a female contact piece, and the electrical connection is completed by the insertion of the female contact piece and the male contact piece.

The male contact is a rigid part, and its shape is cylindrical (round pin), square cylinder (square pin) or flat (insert). The male contacts are generally made of brass and phosphor bronze.
Ìý
The female contact is the jack, which is the key part of the contact pair. It relies on the elastic structure to elastically deform when it is inserted into the pin to generate elastic force to form close contact with the male contact to complete the connection. There are many types of jack structures, including cylindrical type (splitting, shrinking), tuning fork type, cantilever beam type (longitudinal slotting), folding type (longitudinal slotting, figure 9), box type (square jack) as well as hyperboloid wire spring jacks and so on.

2. Insulator: The insulator is also often referred to as a base or an insert. Its function is to arrange the contacts at the required position and spacing, and to ensure the insulation between the contacts and between the contacts and the housing. Good insulation resistance, withstand voltage performance and ease of processing are the basic requirements for selecting insulating materials to be processed into insulators.

3. Case: Also known as the shell, it is the outer cover of the connector, which provides mechanical protection for the built-in insulating mounting plate and pins, and provides the alignment of the plug and socket when they are mated, thereby securing the connector to the device.

4. Appendix:ÌýAccessories are divided into structural accessories and installation accessories. Structural accessories such as retaining rings, positioning keys, positioning pins, guide pins, coupling rings, cable clamps, sealing rings, gaskets, etc. Mounting accessories such as screws, nuts, screws, spring rings, etc. Most of the accessories have standard parts and general parts.

Basic Properties of Connectors

The basic performance of connectors can be divided into three categories: mechanical performance, electrical performance, environmental performance.

1. Mechanical perfermance: As far as the connection function is concerned, the insertion force is an important mechanical property. The insertion force is divided into the insertion force and the extraction force (the extraction force is also called the separation force), and the requirements of the two are different. In the relevant standards, there are provisions for the maximum insertion force and the minimum separation force, which means that from the point of view of use, the insertion force should be small (thereby a structure with low insertion force LIF and no insertion force ZIF), and if the separation force is too small, will affect the reliability of the contact.

Another important mechanical property is the mechanical life of the connector. Mechanical life is actually a durability index, which is called mechanical operation in the national standard GB5095. It takes one insertion and one extraction as a cycle, and judges whether the connector can normally complete its connection function (such as contact resistance value) after the specified insertion and extraction cycle.

The insertion force and mechanical life of the connector are related to the contact structure (positive pressure), the coating quality (sliding friction coefficient) of the contact part, and the dimensional accuracy (alignment) of the contact arrangement.

2. Electrical performance: The main electrical properties of connectors include contact resistance, insulation resistance and electric strength.

(a) Contact resistance: A high-quality electrical connector should have a low and stable contact resistance. The contact resistance of connectors varies from a few milliohms to tens of milliohms.

(b) Insulation resistance: an index to measure the insulation performance between the contacts of an electrical connector and between the contacts and the shell, and its magnitude ranges from hundreds of megohms to several gigaohms.

(c) Dielectric strength: or withstand voltage, dielectric withstand voltage is to characterize the ability of the connector to withstand the rated test voltage between the contacts or between the contacts and the shell.

(d) Other electrical properties: EMI leakage attenuation is to evaluate the electromagnetic interference shielding effect of the connector, and electromagnetic interference leakage attenuation is to evaluate the electromagnetic interference shielding effect of the connector, generally tested in the frequency range of 100MHz~10GHz.
Ìý
For RF coaxial connectors, there are also electrical indicators such as characteristic impedance, insertion loss, reflection coefficient, and voltage standing wave ratio (VSWR).

Due to the development of digital technology, in order to connect and transmit high-speed digital pulse signals, a new type of connector, namely high-speed signal connector, has appeared. Correspondingly, in terms of electrical performance, in addition to characteristic impedance, some new electrical indicators have appeared. Such as crosstalk, transmission delay, time delay and so on.

3. Environmental performance:ÌýCommon environmental properties include temperature, humidity, salt spray, vibration and shock.

(a) Temperature resistance: At present, the maximum working temperature of the connector is 200°C (except for a few high-temperature special connectors), and the minimum temperature is -65°C. Since the current generates heat at the contact point when the connector is working, resulting in a temperature rise, it is generally believed that the operating temperature should be equal to the sum of the ambient temperature and the temperature rise of the contact point. In some specifications, the maximum temperature rise allowed by the connector at the rated operating current is clearly specified.

(b) Moisture resistance: The intrusion of moisture will affect the insulation performance of the connector and corrode metal parts. The constant damp heat test conditions are relative humidity 90%~95% (according to product specifications, up to 98%), temperature +40±20℃, and the test time is at least 96 hours according to product regulations. The alternating damp heat test is more severe.

(c) Salt spray resistance: When the connector works in an environment containing moisture and salt, its metal structural parts and the surface treatment layer of the contact parts may cause galvanic corrosion, which affects the physical and electrical properties of the connector. To evaluate the ability of electrical connectors to withstand this environment, the salt spray test is specified. It is to hang the connector in a temperature-controlled test box, and spray the sodium chloride solution with the specified concentration with compressed air to form a salt fog atmosphere. The exposure time is specified by the product specification, at least 48 hours.

(d) Vibration and shock: Vibration and shock resistance are important properties of electrical connectors, especially in special application environments such as aviation and aerospace, railway and road transportation. An important indicator of contact reliability. There are clear provisions in the relevant test methods. The shock test shall specify the peak acceleration, duration and shock pulse shape, as well as the time of interruption of electrical continuity.
Ìý
(e) Other environmental properties: According to the requirements of use, other environmental properties of electrical connectors include sealing (air leakage, liquid pressure), liquid immersion (the ability to resist deterioration of specific liquids), low air pressure, etc.

Published by Jul 26, 2022 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree