91ÊÓƵ¹ÙÍø

91ÊÓƵ¹ÙÍø is Automatic Optical Inspection (AOI) Technology involved?
Knowledge

91ÊÓƵ¹ÙÍø is Automatic Optical Inspection (AOI) Technology involved?

What is AOI? AOI stands for automatic optical inspection technology, known for its non-contact nature, rapid speed, high precision, and stability. This technology effectively addresses the limitations of manual visual inspection in quality management.
Published: Nov 17, 2023
91ÊÓƵ¹ÙÍø is Automatic Optical Inspection (AOI) Technology involved?

During the product manufacturing process, various factors contribute to the inevitable production of defects in components. These defects encompass issues like hole dislocation, scratches, open circuits, short circuits, and pollution on printed circuit boards. Additionally, defects such as pinholes, scratches, particles, and mura may be present on the surfaces of the substrate glass and filter of the liquid crystal panel, while the steel strip surface may exhibit cracks, roller marks, holes, and pits. The impact of these defects extends beyond compromising product performance, potentially jeopardizing life safety in severe cases and leading to significant economic losses for users.

The conventional method for defect detection involves manual visual inspection, a practice still prevalent in industries such as mobile phones, flat panel displays, solar energy, and lithium batteries. 91ÊÓƵ¹ÙÍøever, this method poses challenges, as it requires intense light illumination, causing damage to the eyes of detection personnel. It also suffers from subjectivity, limited human eye spatial and temporal resolution, significant detection uncertainty, and a propensity for ambiguity. These shortcomings, including low efficiency, make it challenging to meet the high-speed and high-resolution detection requirements of modern industry.

With the rapid advancement of electronic technology, image sensing technology, and computer technology, automatic optical (visual) detection technology has emerged as a crucial means of detecting surface defects. This technology, based on optical image sensing, replaces the manual visual detection of surface defects and offers advantages such as automation, non-contact operation, fast speed, high precision, and stability.

What Is AOI?

Automated Optical Inspection (AOI) technology, also known as Machine Vision Inspection (MVI) technology or Automated Visual Inspection (AVI) technology, is widely recognized in industries like flat panel displays, semiconductors, solar, and other manufacturing sectors. While the terms AOI and MVI/AVI are popular, they differ slightly in concept and function.

In a narrow sense, MVI is an emerging scientific technology integrating image sensing, data processing, and motion control for tasks such as measurement, detection, recognition, and guidance in industrial production. MVI uses optical imaging methods to simulate the visual imaging function of the human eye, employing a computer processing system instead of the human brain for data processing. Broadly speaking, MVI expands the functions of human eyes, brains, and hands, focusing on obtaining information from images and feeding it back to automatic actuators to complete specific tasks. Automatic detection technology based on any image sensing method falls under MVI or AVI, with MVI becoming AOI when using optical imaging methods. Thus, AOI can be considered a special case of MVI.

Based on different imaging methods, AOI can be classified into three-dimensional (3D) AOI and two-dimensional (2D) AOI. 3D AOI is mainly used for measuring object shape, geometric parameters, part grouping, positioning, recognition, and robot guidance. On the other hand, 2D AOI is primarily employed for product appearance (color, defects, etc.) detection, classification of different objects or appearances, and distinguishing between good and defective products.

AOI System Composition

Currently, the most widely used AOI system in the industry integrates a simple optical imaging and processing system comprising general devices like cameras, lenses, light sources, and computers. This system, as depicted in Figure 1, captures images directly under the illumination of the light source and processes them using computer algorithms. The advantages of this simple system include low cost, easy integration, and a relatively low technical threshold. It effectively replaces manual detection in the manufacturing process and meets the requirements of most scenarios.

91ÊÓƵ¹ÙÍøever, for visually inspecting large-format or complex structure objects, single-camera AOI systems may prove insufficient due to limitations in field of view, resolution, accuracy, or specific detection speed requirements. In such cases, the integration of multiple basic units is necessary to collaboratively complete challenging detection tasks. This approach involves adopting a multi-sensor imaging, high-speed distributed processing AOI system integration architecture.

The multi-sensor imaging and high-speed distributed processing MVI system integration architecture serves as a general framework for large-format surface defect AOI detection systems. This system includes components such as a light source, camera array, microscopy re-inspection, cluster parallel processing system, control system, main control computer, server, and an industrial area network interconnected with a factory data center. The system architecture caters to both large-scale surface defect low-resolution rapid detection and high-resolution microscopic re-inspection. The complete AOI system integrates not only the illumination and optical imaging unit but also the test object supporting transmission unit, precision motion mechanism, control unit, and a high-speed parallel image processing unit.

AOI System Integration Technology

AOI system integration technology involves crucial elements such as key devices, system design, machine integration, and software development. Key devices in the AOI system include image sensors (cameras), lenses, light sources, acquisition and preprocessing cards, and computers. Commonly used image sensors comprise various types of CMOS/CCD cameras. The combination of the image sensor, lens, and light source forms the sensing unit in most automatic optical detection systems. Selecting and configuring these devices requires careful consideration of detection requirements.

The choice of a light source involves factors such as color, wavelength, power, lighting method, and needs to consider the image sensor's sensitivity range to the light source spectrum. Lens selection takes into account optical parameters like field of view, depth of field, and resolution. The optical resolution of the lens must align with the spatial resolution of the image sensor for optimal cost performance. In general, the optical resolution of the lens slightly exceeds the spatial resolution of the image sensor. Using a black and white camera for imaging enhances resolution, and the image sensor (camera) adopts area array or line array configurations based on specific requirements. Factors considered when selecting the model include imaging field of view, spatial resolution, minimum exposure time, frame rate, and data bandwidth. Detecting moving objects requires consideration of adverse effects of image motion blur, accurate calculation of the minimum exposure time causing motion blur, and determination of the image sensor type. The exposure time should be less than the minimum causing motion blur, and selecting the global shutter mode is appropriate for fast exposure. Achieving the best signal-to-noise ratio involves maximizing the image sensor gain, improving image brightness with the light source's energy (power), or increasing the lens aperture diaphragm without affecting the available imaging depth of field.

In system integration, designing the support method and precision transmission and positioning device for the device under test is crucial. This involves precision mechanical design technology, which is vital in automatic manufacturing and assembly industries such as flat panel displays, silicon wafers, semiconductors, and MEMS. The optical inspection system in these fields operates in ultra-clean rooms, necessitating a high self-cleaning ability. System component materials, pneumatic and automatic device selection, motion guide design, and device selection all have strict requirements to prevent secondary pollution to the production environment, particularly the workpiece itself. For online inspection of large parts (e.g., high-generation liquid crystal glass substrates, silicon wafers), adopting air float support, positioning and transmission mechanisms, self-lubricating devices for moving parts (e.g., bearings), FFU fans for environmental purification, and static elimination devices for anti-static treatment on the workpiece are often necessary.

High-speed image data processing and software development stand out as core technologies in automatic optical inspection. Since automatic optical detection relies on image sensing to obtain measurement information, data amounts can be substantial, especially in high-speed online detection where image data can be massive. To meet production beat requirements, high-speed data processing technology is essential. Common methods include shared memory multi-thread processing, shared memory or distributed memory multi-process processing, and using distributed computer clusters to divide huge images into small data streams processed by individual cluster nodes. For time-consuming and complex algorithms, achieving time requirements may be challenging with only the computer CPU. Hardware processing technologies such as DSP, GPU, FPGA, and other hardware processing modules may be required to work in conjunction with the CPU for fast and complex calculations.

In Summary

In recent years, especially since the introduction of China's "Made in China 2025" development strategy in 2015, the replacement of people with machines—specifically using machine vision or automatic optical inspection instead of human vision—has gained traction. This shift has enabled efficient and online automatic inspection and quality control of product parts manufacturing quality, garnering favor across industries. AOI technology is now widespread in sectors like industry, agriculture, and biomedicine, particularly in precision manufacturing and assembly industries such as mobile phones, liquid crystal panels, silicon wafers, and printed circuit boards. Notably, the development of 3D AOI for assembly guidance and 2D AOI for surface defect detection continues to progress with the emergence of advanced inspection equipment.

Published by Nov 17, 2023 Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree