91ÊÓƵ¹ÙÍø

Why Do We Need to Anodize the Precision Machined Parts?
Knowledge

Why Do We Need to Anodize the Precision Machined Parts?

Anodizing is a process of surface treatment. The final process of metal manufacturing is surface finishing, anodizing precision machined metal parts, a reliable and relatively inexpensive method to improve wear resistance and coloring aluminum and other non-ferrous metals.
Published: May 12, 2020
Why Do We Need to Anodize the Precision Machined Parts?

Anodizing is a process of surface treatment

Anodizing is an electrochemical conversion process that usually forms an oxide film in an electrolyte (chemical solution) on aluminum. The aluminum part is the anode (hence the name "anodization"), and current passes through them and the above electrolyte (most commonly sulfuric acid is used) between the cathode and the cathode, which is usually a flat aluminum strip. There are different types of anodizing, the most common being type I-chromic acid anodizing, type II-sulfuric acid anodizing, and type III hard anodizing or Mil-A-8625 name Hardcoat. Other less common types are phosphoric acid and anodized titanium. Anodizing is a porous structure grown from an aluminum matrix and can absorb color dyes well. This is done by using a secondary operation of organic or inorganic coloring.
Other common types include chromic acid anodizing, boric acid anodizing (BSAA), sulfuric acid anodizing, hard anodizing (hard coating), titanium anodizing, electrolytic two-step anodizing-AnoBlack EC.

Anodizing precision-machined parts can provide a reliable and relatively inexpensive method to improve wear resistance and color aluminum and other non-ferrous metals. This electrochemical process was first developed in the 1920s. It revolutionized many industries, requiring lightweight, strong, and corrosion-resistant aluminum profiles for window frames, decorative facade panels, and many other architectural elements.
Today, it can protect satellites, skyscraper facades, and components in many industries, from aerospace to medical, and is one of the most effective ways to manufacture durable and almost maintenance-free aluminum components.

91ÊÓƵ¹ÙÍø to do it? Anodizing is a form of highly controlled oxidation. Essentially, oxidation corrodes ferrous metals. 91ÊÓƵ¹ÙÍøever, if applied correctly to non-ferrous metals, the effect is reversed. Aluminum is a common choice because of its lightweight and corrosion resistance, but for titanium, magnesium, zinc, and other metals that lack iron, there are indeed processes.

The common method of anodizing aluminum is to immerse the part in a sulfuric acid bath, which will form tiny holes (nanopores) in the aluminum surface. An electric current is applied to the medium, and by adding a cathode, oxygen ions are released from the acid and combined with aluminum. This forms an oxide layer, and the color can be applied at this time if necessary. Finally, a sealant is applied to close the nanopores and any micro-cracks in the oxide layer.
Unlike electroplating or paint that only covers the surface, anodizing is part of the metal, so it does not flake, flake, or flake over time. Just like the black oxidation conversion process of steel alloys, since the oxidation is derived from the metal, it will not flake or flake.

Benefit of anodizing

  • Durability: As mentioned above, anodization changes the aluminum substrate at the molecular level. Anodized parts will not chip, flake or flake, and have extremely strong corrosion resistance and wear resistance. If sealed properly, wait at least five years in outdoor conditions.
  • Low Cost: High value. The service life of anodized aluminum parts is longer than its sprayed or plated similar parts, and the manufacturing cost is lower.
  • Safe for the Environment: Unlike spray coating and electroplating, anodizing does not produce hazardous waste or interfere with the recyclability of aluminum.
  • Easy to Maintain: The parts look original from production and have remained in this condition for many years. Soap and water or mild detergents can remove dirt and restore the finish relatively easily.
  • Aesthetics: The precision-processed parts are anodized to preserve the metallic luster of the parts, and the color is easy to repeat, which can be used in future production.
  • Improve lubrication: For internal components, the porosity of the unsealed anodized surface can improve the adhesion and lubricity of the adhesive. 91ÊÓƵ¹ÙÍøever, this may expose them to contaminants, and unsealed or partially sealed parts require special attention and consideration.
Precautions of working process
  • The positive factors are far greater than the negative factors, but anodizing is not a miraculous solution. Before choosing anodizing as the final application, the application and environment of each component must be carefully considered.
  • Long-term exposure to ultraviolet (UV) light will cause the dye to fade over time. More resistant dyes can be used, but UV resistance will reduce the range of available colors.
  • It is almost impossible to miss the make-up of anodized products. Although anodized surfaces are incredibly resistant to damage, they are not invincible. Even untrained eyes, paint modification is obvious.
  • Compared with paint, color choices are limited. With all the advantages of anodizing, paint will always provide more color options in exchange for higher cost and lower durability.
  • If you, unfortunately, hire an unqualified manufacturer, poor seals can cause corrosion of anodized parts.
  • Temperatures above 176 ° F (80 ° C) will rupture the anodized aluminum, which has a lower thermal conductivity and linear expansion coefficient than uncoated aluminum.
  • Anodizing can change the size of the components, with thickness ranging from .0002 inches to 0.002 inches (5 microns to 50 microns). This process increases the size of any surface by half the thickness of the oxide because the surface itself is half processed.
Published by May 12, 2020 Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
RO Filter System Pressure Valves and Flow Restrictors: Enhancing Efficiency and Performance
Reverse osmosis (RO) filtration systems have become a staple in water purification due to their ability to remove contaminants effectively. 91ÊÓƵ¹ÙÍøever, the efficiency and longevity of an RO system depend heavily on precise water flow control. Pressure valves and flow restrictors play a crucial role in optimizing the system's operation by regulating pressure and ensuring optimal flow rates. These components improve RO system efficiency, reducing wastewater, and maintaining membrane performance.
Headline
Knowledge
PP Pre-Filters: Essential Protection for RO Filter Systems
Reverse Osmosis (RO) filtration systems rely on high-performance membranes to remove contaminants from water. 91ÊÓƵ¹ÙÍøever, these membranes are highly sensitive to particulates, sediments, and other impurities that can reduce their lifespan and efficiency. Polypropylene (PP) pre-filters are used as a reliable and cost-effective solution to protect RO membranes by trapping large particles before they reach the membrane. PP pre-filters significantly enhance the overall effectiveness and longevity of an RO filtration system. Regular replacement of PP pre-filters is much more economical than frequent replacement of expensive RO membranes. Beyond RO systems, PP pre-filters are widely used in industrial applications, municipal water treatment, food and beverage processing, pharmaceuticals, and electronics manufacturing, where water purity is a critical requirement.
Headline
Knowledge
The Essential Role of Carbon Pre-Filters in RO Filtration Systems
Reverse osmosis (RO) filtration systems have long been regarded as one of the most effective methods for purifying water, removing contaminants, and improving water quality. 91ÊÓƵ¹ÙÍøever, thin-film composite (TFC) membranes are highly sensitive to chlorine, making carbon pre-filters essential for preventing membrane damage and ensuring long-term system efficiency. Carbon pre-filters protect the delicate membrane by reducing chlorine, sediment, volatile organic compounds (VOCs), and other impurities that could deteriorate the membrane and compromise performance. Over the years, advancements in carbon filtration technology have enhanced the effectiveness of RO systems, ensuring cleaner and safer water for residential, commercial, and industrial use.
Headline
Knowledge
PE Tubing for RO Filter Systems
Polyethylene (PE) tubing plays a crucial role in ensuring the safe and efficient transfer of water within RO filtration systems. Recognized for its durability, flexibility, and resistance to contaminants, PE tubing has become a preferred choice for both residential and commercial water purification applications. PE Tubing is used in RO Systems for nearly all water connections including inlet, membrane, storage tank, faucet, and drain line tubing. The benefits, types, materials, manufacturing process, and best practices for using RO filter system PE tubing are extensive.
Headline
Knowledge
Faucets in RO Filter Systems: Enhancing Performance and Aesthetics
One often overlooked component of drinking water filtration systems that significantly impacts both functionality and aesthetics is the filter system's faucet. A high-quality faucet not only ensures smooth operation but also enhances the user experience and complements the kitchen design. The right faucet for an RO system combines durability, safety, and convenience with a stylish appearance that blends seamlessly with both modern and traditional kitchen designs.
Headline
Knowledge
Pressure Gauges for RO Water Filter Systems
With any water filtration system, ensuring optimal system performance is critical for maintaining water quality and extending the lifespan of filtration components. Reverse osmosis (RO) water filter system pressure gauges are an effective solution for monitoring pressure fluctuations within filtration systems, helping users detect potential issues before they compromise water quality. By providing real-time pressure readings, these gauges enable users to assess the condition of their filters, diagnose clogs, and ensure proper system operation.
Headline
Knowledge
Garden Hose Spray Nozzles
Garden Hose Spray Nozzles attach to the end of a garden hose and provide a versatile solution to water distribution, allowing for everything from a fine mist for delicate flowers to a strong jet for cleaning garden paths. They not only help in efficient water management but also make gardening tasks more convenient and effective. Beyond garden care, these nozzles are incredibly versatile in their applications. They can be used for washing cars, cleaning outdoor furniture, and even bathing pets. This adaptability makes them an indispensable tool in any household. By controlling the spray pattern and intensity, water is utilized more efficiently, reducing waste and saving on water bills, which is particularly beneficial in regions with water usage restrictions.
Headline
Knowledge
Pressure Storage Tanks for RO Filter Systems
Reverse Osmosis (RO) filter systems have revolutionized water purification by removing contaminants at the molecular level, thereby providing high-quality drinking water. 91ÊÓƵ¹ÙÍøever, RO filtration is a slow process and cannot deliver immediate high-flow water like standard filtration methods. Without a storage tank, an RO system would require several minutes to fill just a single glass of water. Relying solely on direct filtration would be impractical for everyday use. To address this issue, RO filter systems employ a pressure storage tank that accumulates purified water, keeping it under a moderate pressure, sufficient to make it ready for immediate and convenient dispensing. These tanks have become an essential component of RO systems in residential, commercial, and industrial settings.
Headline
Knowledge
Benefits and Applications of Garden Rakes and Hoes
Garden rakes and hoes are indispensable tools for both professional landscapers and home gardeners. They have been used for centuries to cultivate, maintain, and enhance soil conditions, ensuring that gardens thrive. Their versatility and effectiveness make them essential for various gardening and landscaping tasks, including: Soil Preparation: Loosening compacted soil for better aeration and water penetration. Weed Control: Removing unwanted plants efficiently without using chemicals. Debris Removal: Clearing leaves, twigs, and other organic matter from garden beds and lawns. Leveling and Smoothing: Ensuring even distribution of soil, mulch, or compost. Furrowing and Planting: Creating uniform rows for planting seeds and seedlings.
Headline
Knowledge
RO Filter System Booster Pumps and Why a Diaphragm Pump Is the Best Choice
If you're considering purchasing a reverse osmosis (RO) water filtration system, you may have noticed that some models include a booster pump while others do not. If you’re unfamiliar with the technology, you might wonder: Why does an RO system need a pump? The short answer is that water pressure is crucial for efficient RO filtration, and a booster pump improves this system efficiency. So, you may then wonder, what does a diaphragm pump do, and why is it considered the best choice for RO filtration? Let’s examine why a diaphragm pump is the most reliable and effective type of pump for this application.
Headline
Knowledge
Garden Shovels: The Essential Tool for Every Gardener
Gardening has long been a rewarding hobby, as well as an essential practice for providing food, beauty, and practical benefits for any home or other environment. As gardening techniques evolved, so did the need for specialized tools, and among these, the garden shovel became an indispensable tool. There are a variety of garden shovels and trowels available, and it is interesting to note that gardeners can be quite particular when it comes to choosing their favorite hand trowel or shovel.
Headline
Knowledge
Grass Shears: Precision Cutting for Lawn Care
Grass shears have long been recognized as an effective solution for trimming grass in areas where traditional lawnmowers cannot reach. They offer precision cutting, allowing gardeners and landscapers to maintain clean, well-defined edges along pathways, garden beds, and other landscaping features. Advances in materials and design have improved their efficiency, durability, and ease of use.
Agree