91ÊÓƵ¹ÙÍø

3D Printing in the Automotive Industry
Knowledge

3D Printing in the Automotive Industry

3D printed end-use parts are going onto vehicles with increasing frequency. Recent real-world examples showcase additive manufacturing benefits in design, weight savings and more.
Published: Mar 28, 2022
3D Printing in the Automotive Industry

3D printing has long been touted as a solution for prototypes, one-offs and small volumes, but can it find its way into large-scale production? Specifically, production in a high-volume industry like automotive?

The automotive industry has embraced 3D printing due to the inherent weight and cost reductions. It also allows for rapid prototyping of new or bespoke parts for test or small-scale manufacture. So, for example, if a particular part is no longer available, it can be produced as part of a small, bespoke run, including the manufacture of spare parts. Alternatively, items or fixtures can be printed overnight and are ready for testing ahead of a larger manufacturing run.

While it will likely still be some time before mass-market vehicles like the Honda Civic or Chevy Malibu sport 3D printed components, there are already compelling use cases for additive manufacturing (AM) in the automotive sector. Automakers are turning to the technology for its design freedoms, light weighting capabilities, material options and more. The quantities of these parts being 3D printed remain relatively small for now, but these low-volume and bespoke components point the way toward greater use of the technology in the future.

What Is 3D Printing?

3D printing, also known as an additive manufacturing, is a method of creating a three-dimensional object layer-by-layer using a computer created design. Layers of material are built up to create a 3D part. This is the opposite of subtractive manufacturing processes, where a final design is cut from a larger block of material. As a result, 3D printing creates less material wastage.

There are three broad types of 3D printing technology; sintering, melting, and stereolithography.

  1. Sintering is a technology where the material is heated, but not to the point of melting, to create high resolution items. Metal powder is used for direct metal laser sintering while thermoplastic powders are used for selective laser sintering.>/p>

  2. Melting methods of 3D printing include powder bed fusion, electron beam melting and direct energy deposition. These use lasers, electric arcs or electron beams to print objects by melting the materials together at high temperatures.

  3. Stereolithography utilizes photopolymerization to create parts. This technology uses the correct light source to interact with the material in a selective manner to cure and solidify a cross section of the object in thin layers.

91ÊÓƵ¹ÙÍø Long Does 3D Printing Take?

The printing time depends on a number of factors, including the size of the part and the settings used for printing. The quality of the finished part is also important when determining printing time as higher quality items take longer to produce. 3D printing can take anywhere from a few minutes to several hours or days. Speed, resolution and the volume of material are all important factors.

91ÊÓƵ¹ÙÍø Is 3D Printing Changing the Automotive Industry?

  1. Reshaping the Prototyping Process
  2. Prototyping has historically been the most common use case for 3D printing in the automotive industry. Thanks to the vastly increased speed at which prototyping can be carried out using 3D printing, rapid prototyping has become virtually synonymous with 3D printing, and the technology has revolutionized the product development process.

  3. Creating Custom, Complex, and High-Performance Parts
  4. 3D printing is ideal for producing custom parts at greatly reduced expense, empowering manufacturers with vast new capabilities in what they are able to produce and offer to their customers.

  5. Producing Tooling and Manufacturing Aids
  6. Engineers use manufacturing aids to make manufacturing and assembly processes simpler and more reliable, reducing cycle times and improving worker safety. Automotive factories and part suppliers use thousands of custom jigs and fixtures, each tailored and highly optimized for end-use. The result is a proliferation of custom tools, adding significant cost and complexity to the manufacturing process.

    Outsourcing the production of these custom parts to machining service providers who produce the parts from a solid billet of plastic or metal can delay production by weeks, while the long lead times also make it hard to adapt to changes on the factory floor.

    Additive manufacturing can cut the lead time to a few hours and also dramatically reduce costs when compared to outsourcing parts to an external vendor. As complexity doesn’t incur additional costs, the parts can also be better optimized for their end-use.

  7. Solving the Spare Parts Problem
  8. Spare parts have historically represented a challenge for the automotive industry. Demand by nature is sporadic and unpredictable, making the value of producing spare components a debatable financial decision in some instances. 91ÊÓƵ¹ÙÍøever, the value of products is more precarious and repairs more difficult in the absence of readily available spare parts. Producing spares in anticipation of later demand also requires great expenditure on storage and 3D printing is well-positioned to make a significant positive impact on the automotive industry’s spare parts problem.

  9. Easing General Parts Manufacturing
  10. As 3D printing processes become more affordable with respect to the cost of hardware and materials involved, we will see a progressive transition towards producing regular automotive parts. 3D printers can improve efficiency at the general parts manufacture stage. The breadth of materials offered through 3D printing is starting to meet the mechanical requirements of different components of a vehicle. As additive methods reach cost parity with traditional methods, it will make more sense from a productive and financial point of view to incorporate 3D printing further into general parts manufacturing.

Key 91ÊÓƵ¹ÙÍø

While a full-body 3D printed car that is ready for market circulation is still some time away, there are some exciting projects and concept cars that signal the direction in which the industry is heading. As the understanding of the value of 3D printing continues to spread through the industry, and as the technology and available material base grow ever more versatile, this growing trend will continue.

Published by Mar 28, 2022 Source :, Source :, Source :

Further reading

You might also be interested in ...

Headline
Knowledge
Precision in Rotation: Indexing Plates in Metal Machining
Rotary Indexing Plates are precision components of milling machines that facilitate the precise angular positioning of workpieces and cutting tools. They are used in both metal machining and woodworking, and while they share a fundamental purpose, there are notable differences in their design, capabilities, and applications due to the distinct characteristics of the materials and processes involved.
Headline
Knowledge
Sheet Metal Fabrication Machines: An Overview
Sheet metal machines are widely used in various manufacturing industries for shaping, cutting, and forming sheet metal into different components. Some of the industries that extensively utilize sheet metal machines include light industries such as electrical and medical equipment, all the way up to heavy industries such as automotive, rail, oil and gas, as well as wind power generation.
Headline
Knowledge
The Significance of Planing Machines in the Machining Tool Industry
Metal and wood planing machines are essential tools in the machining industry. Wood planers use a rotating cutterhead equipped with sharp blades to smooth and size workpieces, ensuring uniformity in woodworking projects. Metal planers use a cutting tool mounted on a reciprocating tool head to remove excess material from metal surfaces, achieving precise dimensions in components. Both types of planning machines enhance efficiency, precision, and the overall quality of finished products. Understanding the key features of the various types of planing machines will help you choose the right machine best suited for your machining needs.
Headline
Knowledge
Stamp Press Technology and Manufacturing in Taiwan
Nestled in the heart of East Asia, Taiwan has emerged as a powerhouse in the global stamp press industry, with a robust manufacturing ecosystem, and cutting-edge technology. With a rich manufacturing tradition and a focus on precision engineering, Taiwanese companies meet the demands of diverse sectors, ranging from electronics and automotive to medical devices and aerospace, supplying high-quality stamp press solutions to a diverse range of markets worldwide.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Mechanical Reducers in Industrial Manufacturing
Speed reducers are powerful mechanical devices generally used in machining tools to multiply the force or torque generated by an input power source, thereby increasing the usable force, enhancing the performance and precision of the machining tool. They are also used in material handling systems such as conveyor belts and lifting mechanisms to control the speed of material transfer and manage heavy loads efficiently. By multiplying the available output force, they enable the use of a reduced input power source, resulting in cost savings for machine tool investments. When choosing the appropriate speed reducer, the torque, speed, and horsepower of the input, as well as the mounting configuration, efficiency, and required lifetime all need to be considered. The quality of the machine chosen will also be reflected in the amount of backlash, transmission error, torsional rigidity, and inertia experienced during machining.
Headline
Knowledge
Introduction to Stamp Press Technology
Stamp press technology, also known as stamping or pressing, is a manufacturing process that utilizes a press to shape or cut materials into desired forms. This process involves the use of a die and a punch to form or cut the material, creating intricate shapes with high precision. Widely employed for mass production due to its speed, accuracy, and repeatability, this process is a crucial part of modern manufacturing.
Headline
Knowledge
Innovations in Sawing Technology
The traditional image of saws as just cutting tools is being reshaped by cutting-edge advancements that integrate automation and robotics in sawing technologies, paving the way for greater precision and efficiency of sawing technology in manufacturing.
Headline
Knowledge
The Fundamentals of Drilling Machines
Drilling machines play a pivotal role in the manufacturing industry, using rotary motion to create precise holes in a variety of materials. Whether it's metal, wood, plastic, or composites, drilling machines are versatile and essential for producing components in countless applications.
Headline
Knowledge
Hybrid Milling in Manufacturing: Integrating Additive and Subtractive Processes
The integration of additive manufacturing (AM) and subtractive milling processes has emerged as a transformative manufacturing process known as hybrid milling. This technique combines the strengths of both 3D printing and traditional subtractive milling, opening up new possibilities and diverse applications for creating complex geometries with improved material efficiency.
Headline
Knowledge
Features and Mechanics of Industrial Saws
Industrial saws shape raw materials into precise components that form the backbone of countless products. Understanding the mechanics of sawing, examining the fundamental principles, cutting mechanisms, and essential aspects of safety and maintenance will ensure the most efficient and safe operation of industrial saws.
Headline
Knowledge
Understanding the Diversity of Industrial Saws
Industrial saws play a pivotal role in processing a wide range of materials with precision and efficiency. Taiwan is a major supplier of industrial saws to the automotive, aerospace, and construction, as well as the metal fabrication industries. This article aims to provide a comprehensive understanding of the diverse industry of industrial saws, exploring their types, structures, applications, and the crucial role they play in various industries.
Agree